Projects By Product: Datasets or Database

Landscape Conservation Cooperatives use a collaborative approach to identify landscape scale conservation solutions. LCCs work across jurisdictional and political boundaries to work with partners to: meet unfilled conservation needs, develop decision support tools, share data and knowledge, and facilitate and foster partnerships.

As part of a shared science strategy, LCCs coordinate closely with the National Climate Change and Wildlife Center and the eight regional Climate Science Centers.

The North Atlantic Region of the United States and Canada boasts diverse habitats, from coasts to mountains, that support endemic and rare plant species. However, recent conservation actions and prioritization efforts in this region have neglected to include plants.

Prioritization of road stream crossings for surveys and targeted surveys.

Climate change threatens to alter the ecology of coasts in the Northeastern US: it disrupts processes, enhances disturbance, rearranges or destroys habitat, and creates novel conditions for the fish and wildlife that inhabit the coastal zone.

The decline in the monarch butterfly has led to it being considered for listing under the Endangered Species Act.

The decline in the monarch butterfly has led to it being considered for listing under the Endangered Species Act.

A decline in habitat quality and quantity in the southern Great Plains is a driving factor in population declines of endemic grassland birds, insects, and native plants.

Sampling Grassland habitats in Urban, Suburban and Rural areas of Central Texas using a modified GMIT protocol and Data Recorder Protocol provided a baseline of operations and tested various techniques and equipment prior to large-scale implementation.

Estimates of nutrient loading to the Gulf of Mexico indicate that nine states within the Mississippi River Basin are responsible for approximately 75% of all nitrogen and phosphorus delivered to the Gulf.

Estimates of nutrient loading to the Gulf of Mexico indicate that nine states within the Mississippi River Basin are responsible for approximately 75% of all nitrogen and phosphorus delivered to the Gulf.

In response to the rapid and dramatic hydroecological deterioration of the Rio Grande through Big Bend, the Big Bend Conservation Cooperative (BBCC), a multi-disciplinary group of natural resource agencies, research institutions, and conservation organizations have been organizing and implementin

The proposed project focuses upon two major goals:
1. Designate Priority Amphibian and Reptile Conservation Areas (PARCAs) in the South Atlantic Landscape, and develop an adaptive management plan for those areas.

The Southeast Aquatic Resource Partnership will direct development of science-based instream flow information for water resource managers and policy makers of the SALCC.

The Monarch’s View of a City project will lay the groundwork for design principles to guide the development, testing and deployment of future urban conservation for the Monarch butterfly across the Eastern half of the country.

There are myriad barriers to aquatic connectivity beyond dams, with culverts at road crossings primary among them. UGA will lead the effort to develop a database of these non-dam blockages and model the likelihood that each is a barrier to fish movement, including mussel hosts.

Goals: The Project Partners will work to improve the connection between restricted range and at-risk species conservation and the South Atlantic Conservation Blueprint.

The Desert LCC will provide the 50% of the Federal component of funds, and the work designed will support the science objectives for the Desert LCC and its partners as well as provide needed improvements to the National Hydrography Dataset (NHD) in the Lower Colorado River Region, and beyond.

Researchers downscaled projections of maximum and minimum temperature and precipitation across a large extent east of the Rocky Mountains to the Atlantic Coast.  The data is probabilistic in nature, providing flexibility in incorporating climate information into impact assessments.  Statistical t

Habitat loss and degradation due to urban expansion and other human activities have raised concerns for the Western Gulf Coast Mottled Duck population. This species relies on tidal, palustrine, and agricultural wetlands as well as grasslands for all of its life cycle needs.

Alligator Gar, Atractosteus spatula, is an iconic species native to lowland floodplain river systems where they play an important role as top predators and by linking landscapes through their movement. Alligator Gar is also an important native fisheries species in the Trinity River.

This project will result in development of an information management and delivery system to coordinate science communication platforms and to build a catalog inside of the USGS ScienceBase data and information management platform.

The best hope for recovering and maintaining ecosystem function and services for the tallgrass prairie ecosystem is reconstruction.

This project proposes development of a spatial decision support system (DSS) designed to address an identified major conservation goal of the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (ETPBR LCC), in collaboration with adjacent LCCs in the Midwestern U.S.

To evaluate the potential impacts of changes on waterbird habitat due to climate change, this project examines historic responses of water birds to storm surges on the Y-K Delta by examining waterbird distribution and breeding parameters before and after coastal storm surges between 1985 and 2012

No one has better knowledge and opportunity to document coastal storm effects than the people who live in coastal communities. By training a network of Local Environmental Observers to collect coastal storm data, we improve local capacity to engage in coastal observations.

Extensive mapping of coastal change will provide important baseline information on the distribution and magnitude of landscape changes over the past 41 years. With this analysis, changes can be summarized for different land ownership or other units to assess the extent of recent habitat loss.

Storm tides can influence salinity concentrations of ponds on Kigigak Island, which can affect the breeding population of Spectacled Eider found there. This project will expand instrumentation currently collecting data related to pond water levels and salinities, and tidal dynamics.

This project provides travel support for the collection of precision measurements of prioritized benchmarks and submission of these occupations to NOAA NGS for public access.

The primary goal of this project is to facilitate the completion of ShoreZone mapping of biophysical resources of the coastal supratidal, intertidal, and subtidal areas in the southern Alaska Peninsula, and to make this mapping data web accessible and available to all who request the data.

This project will develop a searchable geospatial database for stream and lake water temperature monitoring activities in Alaska.

The goal of this project is to develop a statewide water temperature network with easily understood and readily implemented data standards to support landscape-level assessments.

This project will identify existing coastal change projects in Western Alaska and synthesize information about each project. The resulting report will document the project landscape for communities, researchers, resource managers, and funding agencies.

This project investigates the variability in size and annual growth of juvenile Chinook across western Alaska, the association of juvenile Chinook size or annual growth with stream temperature gradients, and whether expected water temperature changes will affect juvenile Chinook habitat suitabili

This project will compile and analyze existing stream, river and lake temperatures data in SW Alaska, and will result in refinement of the monitoring plan developed to characterize thermal responses to ongoing climate change in the region.

By combining analyses of data from two large lake systems in the Kvichak watershed, laboratory rearing experiments to elucidate functional relationships, and simulation modeling, this project quantifies biological responses to changing freshwater temperature in sockeye salmon in western Alaska.

This project will support data collection in the Bering Sea from a Triaxys oceanographic wave buoy to supplement existing stationary sensors.

Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography.

This project will use ShoreZone imagery collected as part of another partnership effort to map nearly 1,600 km of coastline between Wales and Kotzebue, completing the Kotzebue Sound shoreline for inclusion in the state-wide ShoreZone dataset.

This project will use existing ShoreZone coastal imagery to map 719 km of shoreline in Bristol Bay, from Cape Constantine to Cape Newenham. This section of coastline is an extremely important herring spawning area and an important component of the Bristol Bay fisheries

Brief:
Under this project a collaborative and integrated geodatabase of inventoried connectivity barriers within the South Central Lake Superior Basin (SCLSB) was developed to prioritize restoration for more than 2,000 inventoried stream crossings. 

This project establishes a permafrost observation network at the continuous/discontinuous permafrost boundary of the Western Alaska LCC.

This project focuses on permafrost change and its effect on lake habitat in Western Alaska. Resource managers and local communities need spatially explicit information to determine past lake habitat changes, identify spatial patterns correlated to climate, and project future habitat changes.

The lake and lagoon surface temperature trends and projections that result from this project will fill a fundamental data gap in western Alaska and will be valuable to scientists and land managers for climate change studies, habitat evaluations, and land and resource management decision making.

Water temperature monitoring can provide early warning signs of climate change effects. The products from this project will provide a framework for better understanding trend in the quality of lake environments in relation to climate change.

This project will expand an existing fine-scale storm surge model for the Yukon Kuskokwim Delta. Results will be used to examine the relationship between storm floods and temporal changes in waterbird abundance and nesting locations.

The purpose of this agreement is to initiate SR LCC-wide data discovery, cataloging, and general GIS analysis to characterize the landscape across the SRLCC geographic area.

This project will develop first-ever maps of ecosystem types (landcover) for the Mariana Islands.

The objective of this experimental research is to determine if genetic enrichment may enhance survival, growth, and adaptation of important native Hawaiian montane plant species to changing precipitation patterns by relocating conspecifics to more favorable climate regimes at higher elevation.

Past analysis has shown that temperature-dependent avian malaria is likely to reduce overall available Hawaiian forest bird habitat with temperature increases.