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Wetlands are highly dynamic ecosystem components that fluctuate dramatically in inundation and persistence of
water both within and across years. However, these systems are commonly classified in a deterministic, discrete
manner that does not reflect inherent spatial and temporal variation. Developing a methodology to identify
gradients in water inundation is critical given the dynamic nature of wetlands. We present a methodology that
applies probabilistic estimates, derived from a nonparametric model, to predict wetlands along a gradient in
ephemerality, or degree of water inundation. We applied this model across four sampling areas in the Plains
and Prairie Pothole Region (PPPR) in the U.S. Northern Great Plains. We developed a model relationship between
high-resolution (RapidEye) and moderate resolution (Landsat) satellite sensor data. This allowed us leverage the
benefits of high spatial resolution data and a long temporal series of freely available mid-resolution data to
characterize water persistence in wetlands. To obtain measures of wetland inundation across a gradient of
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Gradient ephemerality, we estimated wetland probabilities across a temporal series reflecting large variation in moisture
Hydmperi?d conditions. We found that a nonparametric statistical approach was highly effective in predicting wetlands of
Ezhiedrgezahty varying size and ephemerality. Our predictions were strongly supported with low error (RapidEye 3.1-15%,
ml? dsai, Landsat 0.3-1.5%). Probabilistic predictions of wetland ephemerality contribute valuable information needed

for management and policy decisions, especially given potential alterations to wetland ephemerality and
ecosystem services under climate change. Using predicted gradients in wetland ephemerality over time will
enable researchers and land managers to more effectively capture nuance in ecosystem condition, function,
and change.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Ecological gradients

A prevalent goal in ecology is to infer how environmental character-
istics influence ecological processes, which may represent gradients and
not discrete boundaries (Lortie et al., 2004; Manning et al., 2004 ). Gradi-
ents can represent different characteristics of the same process and
as such, be expressed in several ways including biotic (e.g., tree height,
biomass), abiotic (e.g., soil moisture, soil pH), fractional proportion
(e.g., percent of a cover type), or probability of occurrence (McIntyre &
Barrett, 1992). Even though gradients are inherent in ecology, traditional
remote sensing efforts often classify data into nominal, non-overlapping
classes, which notably limits our ability to explore relationships between
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environmental and ecological phenomena (Cushman et al., 2010; Evans
& Cushman, 2009; Gosz, 1992; McGarigal et al., 2009).

Wetlands are spatially and temporally dynamic, influencing numer-
ous ecological processes in varying magnitudes based on their variation,
thus providing an ideal example of landscape features that can be
represented as gradients. Wetland ephemerality, or the degree of
water inundation, is influenced by complex, interacting factors includ-
ing wetland type, geology (e.g., wetland substrate and geomorphology),
vegetation, climate, weather, and surrounding land uses (Euliss et al.,
2004; Jackson, 2006). Gradients may exist within individual wetlands;
a single wetland may exhibit a range of ephemerality, from highly
ephemeral wetland edges to permanent water storage at a wetland's
center. Characterizing gradients of wetland ephemerality captures
both their spatial and temporal variability. One way to accomplish this
is by predicting the probability of each location being a wetland based
on the presence of surface water. Given the importance of diverse wet-
lands and associated biodiversity for maintaining resilient ecosystems
(Folke et al., 2004), documenting the continuum of surface water
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inundation, which we will refer to as “wetland ephemerality,” supports
a richer understanding of wetlands' functions and contributions to
ecosystem health.

1.2. Importance of wetlands

Wetlands play numerous roles in supporting biodiversity, ecological
processes, and ecosystem services. These roles include providing breed-
ing and foraging habitat for wetland-dependent species (Gibbs, 2000),
enhancing soil moisture and nutrient cycling, influencing soil chemistry,
and promoting water filtration, groundwater recharge, flood mitigation,
and water storage (Gibbs, 2000; Gleason et al., 2008; Horwitz &
Finlayson, 2011). Consequently, biodiversity is proportionally higher
adjacent to wetlands (Sabo et al., 2005; Soykan et al., 2012). Additionally,
human populations are directly influenced by wetlands' ability to sup-
port agriculture, recreation, and pollution reduction (Dale & Connelly,
2012; Horwitz & Finlayson, 2011). All of these wetland services are
affected by fluctuations in surface water inundation through time.

Wetland ephemerality is tightly linked to climatic variability and
weather extremes, which can cause dramatic temporal fluctuations in
wetland water inundation and persistence through time (Johnson et
al., 2005; Johnson et al., 2004). Whereas large wetlands can provide
persistent water storage and flood mitigation, small, ephemeral
wetlands distribute water across the landscape (van der Kamp &
Hayashi, 1998), enhance nutrient cycling (Bolen et al., 1989), and
promote landscape connectivity (Compton et al., 2007), making them
essential to the maintenance of landscape-level biodiversity.

Wetlands with higher ephemerality tend to be more dependent on
precipitation than groundwater (Johnson et al., 2005; Sorenson et al.,
1998; Winter & Rosenberry, 1998) and exhibit very high spatial-temporal
variation (van der Valk, 2005), making them among the most difficult
ecosystem components to classify (Cowardin, 1982; Gallant, 2015;
Scott & Jones, 1995). Therefore, wetland classifications capable of
capturing spatial-temporal dynamics are an important contribution to
wetland monitoring, particularly in assessing ecological impacts of
climate change (Ballard et al., 2014; Johnson et al., 2010; Werner et
al,, 2013).

1.3. Predicting wetland occurrence and spatial-temporal dynamics

Frequent wetland mapping with clear, repeatable methodology is im-
portant for monitoring changes in wetland water extent and persistence
over time (TOyrd & Pietroniro, 2005). Establishing a record of wetland
conditions under current climate provides a baseline from which to
compare the presence and persistence of wetland surface water under
increased future climate variability. Employing methodology that also
estimates gradients of wetland ephemerality is critical given the dynam-
ic nature of these important landscape features. However, there are
many challenges associated with mapping wetlands given the extensive
complexity of wetland types and wetland dynamics within highly
variable landscapes (Gallant, 2015; Ozesmi & Bauer, 2002).

Historical wetland mapping efforts, including those by the U.S. Fish
and Wildlife Service National Wetland Inventory (NWI; Wilen & Bates,
1995), were based on aerial photograph interpretation. Although
these methods provide highly detailed wetland maps with hierarchical
wetland classifications (Cowardin et al., 1979; Cowardin & Golet, 1995),
they are often time-consuming and expensive to produce (Finlayson &
van der Valk, 1995; Ozesmi & Bauer, 2002). The introduction of satellite
remote sensing techniques has improved the accuracy and cost-effec-
tiveness of wetland mapping efforts (e.g., Baker et al., 2006; Ozesmi &
Bauer, 2002; Wright & Gallant, 2007). However, a single temporal snap-
shot of categorically-defined wetland units cannot be used to quantify
wetland dynamics. If wetland dynamics and changes in inundation are
not monitored frequently, potentially vulnerable wetland complexes
(e.g., those with high spatial-temporal variability) may be excluded
from management and conservation planning.

Monitoring spatial-temporal variability is a major research need in
remote sensing of wetlands (Conly & van der Kamp, 2001). Previous
research efforts have demonstrated the utility of such information
using multiple approaches (Beeri & Phillips, 2007; Kahara et al., 2009;
Niemuth et al., 2010; Wright, 2010). Liu and Schwartz (2012) modeled
broad-scale water body densities under a range of varied climatic condi-
tions, providing a spatially explicit portrait of changes in the number
and distribution of wetlands of varied size over time. Similarly, Pavri &
Aber (2004) monitored wetland change over a period of 15 years,
using spectral signatures to map land cover variability (Pavri & Aber,
2004), and Gémez-Rodriguez et al. (2010) employed a time series to
monitor spatio-temporal changes of small, temporary ponds (Gémez-
Rodriguez et al., 2010). Alternatively, other approaches have character-
ized changes to wetland size, area, and configuration over time in
contrast to fixed NWI-delineated wetland polygons (e.g,, Kahara et al.,
2009; Niemuth et al., 2010). At a finer spatial scale, other studies have
classified levels of wetland inundation along a hydroperiod gradient
using surface water and soil moisture data derived from synthetic
aperture radar (SAR; e.g., Bourgeau-Chavez et al., 2009; Evans et al.,
2014; Gondwe et al.,, 2010; Lang et al., 2008). Wright and Gallant
(2007) performed probabilistic wetland classifications using ancillary
environmental data such as soils, slope, and vegetation as a means to
predict palustrine wetland types. Likewise, Knight et al. (2013)
employed ancillary data and multi-temporal remotely sensed data in a
decision tree classification framework; they found that using multiple,
varied data types greatly improved wetland mapping accuracy
(Knight et al., 2013).

Researchers have also employed a multi-temporal approach to link
persistence of water in wetlands to habitat functionality. For example,
Rover et al. (2011) analyzed persistence of water in wetland catchments
over time to distinguish functional hydrologic wetland classes in the
Prairie Pothole Region (Rover et al., 2011), and Pickens & King (2014)
found that multi-temporal habitat characteristics best explained
marsh bird distributions (Pickens & King, 2014).

Although all these efforts are commendable and valuable contribu-
tions, methods that incorporate gradients in wetland ephemerality in
both space and time have received little attention (Rover et al., 2011).
Gradient analysis approaches can capture spatial variability across land-
scapes (wetlands representing a continuum of ephemerality), within
wetlands (highly ephemeral vs. permanently wet), and through time.

1.4. Objectives

Our objective was to characterize gradients of wetland ephemerality
throughout space and time by: (1) modeling fine-scale probability of
wetland inundation using high-resolution data (RapidEye); and (2)
building a statistical subsampling relationship between high-resolution
and moderate-resolution (Landsat) spectral data to model probability of
wetland inundation across a longer temporal series. Although the
wetland gradient can be wholly represented using RapidEye data,
these data have limited historical archives. Therefore, we employed
the RapidEye to Landsat spectral subsampling relationship to leverage
Landsat's long temporal data archives and estimate the probability of
wetland inundation for a given data acquisition time point. By develop-
ing a method to identify gradients in wetland ephemerality, we aimed
to depict the ecological complexity of wetlands across space and time.

2. Methods
2.1. Study area

Our study area was the Plains and Prairie Pothole Region (PPPR) of
the Northern Great Plains of the United States. The PPPR spans roughly
800,000 km? encompassing Montana, North Dakota, South Dakota, as
well as parts of Wyoming, Minnesota, and lowa (Fig. 1; Plains and
Prairie Potholes Landscape Conservation Cooperative). The PPPR is an
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Fig. 1. Map of the four sampling areas across the Plains and Prairie Pothole Region, USA. The shades indicate three ecoregions. Sampling areas are represented by the black squares.
Sampling area 1 (SA1) is located in Glasgow, Montana; Sampling Area 2 (SA2) is in Pierre, South Dakota within the Fort Pierre National Grasslands; Sampling Area 3 (SA3) is in
Cayuga, North Dakota within Tewaukon National Wildlife Refuge; and Sampling Area 4 (SA4) is within Agassiz National Wildlife Refuge in Middle River, Minnesota. National
Agricultural Imagery Program aerial orthoimages and ground photograph insets typify the dominant wetland landscape and wetland type within each sampling area.

ideal location to characterize wetland ephemerality given the region's
unique climate and ecology, as well as its high diversity of wetland
classes that comprise the extensive wetland network (Euliss et al.,
2004; Johnson et al., 2005; Winter & Rosenberry, 1995). Thousands of
depressional wetlands formed from glaciation events (i.e., prairie
potholes) exist in the PPPR (Euliss et al., 1999), ranging from wet
meadows and shallow-water ponds to saline lakes, marshes, and fens
(Cowardin et al., 1979). Wetlands in this region receive the majority
of their water from snowmelt and rain (Winter & Rosenberry, 1998)
and form extensive networks that are hydrologically connected by
surface and/or ground water (Winter & Rosenberry, 1995). The degree
of connectivity between wetlands, however, varies with time and
weather conditions, as well as with the wetlands' position in the land-
scape (e.g., elevation, soil substrate, topography, proximity to streams
or rivers). Regional climate in the PPPR follows a strong north-to-
south temperature gradient and west-to-east precipitation gradient
(Johnson et al., 2005), creating three distinct ecoregions within the
PPPR (Fig. 1; Olson et al., 2001).

We selected four 500 km? sampling areas for our wetland predic-
tions from across all three ecoregions (Northern Shortgrass Prairie,
Dakota Mixed-grass Prairie, Northern Tallgrass Prairie), with two
sampling areas in the largest ecoregion (Northern Shortgrass Prairie).
Although the majority of surveyed wetlands were located on public
lands due to access constraints, sampling areas were characterized by
arange of land uses, from grazed allotments to leased agricultural fields.
Sampling areas were located near Glasgow, Montana on Bureau of Land
Management lands (SA1); Pierre, South Dakota, within the Fort Pierre
National Grasslands (SA2); Cayuga, North Dakota within Tewaukon
National Wildlife Refuge (SA3); and Agassiz National Wildlife Refuge
in Middle River, Minnesota (SA4).

2.2. Collection of wetland location data

Within each selected sampling area, we surveyed a minimum of 20
wetlands (n = 20-45) from 15 May to 10 August 2012 and from 10
May to 25 June 2013. To ensure that we captured the range of variation
in the landscape, and to prevent biases in the reference training data
towards larger, less ephemeral wetlands, we designed our surveys to

capture a range of wetlands of widely varied size (<0.05 ha to
>1600 ha) and ephemerality (highly ephemeral to permanent). We
collected wetland location information as point locations where stand-
ing water was present using a Trimble Nomad® 900G GPS (Trimble
Navigation Unlimited, Sunnyvale, CA; WGS84 [datum projection], a
minimum of 8 satellites, 6.0 Max PDOP, 33.0 Min SNR, minimum of
150 position fixes). Position fixes were differentially corrected using
the nearest base station with concurrent data (Trimble Pathfinder Office
5.40; Fig. 2a).

2.3. Spectral data

2.3.1. High-resolution RapidEye data

For the entirety of each of the four sampling areas, we acquired high-
resolution (5 m) cloud-free RapidEye scenes (BlackBridge, Berlin,
Germany; spectral range 440-850 nm, including a 440-510 nm blue
band, 520-590 nm green band, 630-685 nm red band, 690-730 nm
red-edge band, and a 760-850 nm near-infrared [NIR] band) at three
points in time representing extremely dry (25 June 2012, 22 July
2012, 12 September 2012, 27 September 2012), extremely wet (3 May
2011, 3 June 2011, 8 July 2011, 30 July 2011), and moderate moisture
conditions (26 July 2010, 8 September 2011, 5 May 2013, 10 June
2013), for a total of 12 scenes. All RapidEye data were geometrically
aligned and orthorectified using ground control points (GCPs) and fine
digital elevation models (DEMs) by the vendor (BlackBridge, Berlin,
Germany).

2.3.2. Moderate-resolution Landsat data

We acquired moderate resolution (30 m) Landsat 5 Thematic
Mapper (TM) imagery (0.45-2.35 um spectral range, including band 1
blue visible, 0.45-0.52 um; band 2 green visible, 0.52-0.60 um; band 3
red visible, 0.63-0.69 pm; band 4 NIR, 0.76-0.90 pm; band 5 NIR,
1.55-1.75 pum; band 7 mid-infrared, 2.08-2.35 um) with <10% cloud
cover through the USGS Earth Explorer interface (http://earthexplorer.
usgs.gov). For each sampling area, we acquired Landsat imagery for
six years, at three points in time across the growing season: early
(May 5-May 30), mid (July 5-July 30) and late (August 4-Sept 30) sea-
son, with the years representing variation in precipitation (two “dry”
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Fig. 2. Workflow diagram of the probabilistic and multiscale modeling framework for the wetland probability classifications. NAIP = National Agriculture Imagery Program.

years [1988, 2002], two years of “moderate” precipitation [1984, 1999],
and two “wet” years [1993, 2011]), for a total of 18 scenes (Table 1). We
selected these years using NOAA data of average yearly precipitation in
the Northern Rockies and Plains climate region (West North Central
States) of the United States over the past 30 years (NOAA, 2013). Across
the 30-year time-span, “dry” years represented the minimum
(366 < 386 mm) average precipitation/year; “moderate” the median
(467 <480 mm) average precipitation/year; and “wet” the maximum
(549 < 605 mm) average precipitation/year.

We used dark-object subtraction (Chavez, 1996; Chavez, 1988) to
atmospherically correct all Landsat spectral data (bands 1-5, and 7)
to at-satellite reflectance values (Song et al., 2001). To represent
characteristics associated with both upland and wetland variation, we
calculated the tasseled cap transformation (Huang et al., 2002) and

Table 1

Modified Soil Adjusted Vegetation Index (MSAVI; Huete, 1988; Qi et
al., 1994), resulting in a total of six bands and four spectral components
used in the model. The tasseled cap transformation represents bright-
ness, greenness, and wetness attributes (Huang et al., 2002 ), which
are sensitive to soil, vegetation structure, and water. MSAVI provides a
vegetation index that compensates for background soil reflectance and
vegetation senescence (Qi et al., 1994), both characteristic of semi-
arid prairie landscapes. All image processing was performed with
user-developed SML scripts in ERDAS Imagine 11.0.4 (Intergraph 2011).

24. Prediction of RapidEye wetland gradient

We derived training data for our wetland predictions from a combi-
nation of field-based data collection (20-45 wetlands/sampling area, as

Descriptions of Landsat data acquisitions for each sampling area across the temporal series. ‘PPT" represents the average yearly precipitation conditions across the Northern Rockies and
Plains climate region, ‘Season’ represents the relative timing of Landsat data acquisitions across the growing season within each of the designated years in the temporal series. Dates in-
dicate the Landsat data acquisition dates corresponding to each condition within each sampling area.

Sampling areas

Year PPT Season SA1 SA2 SA3 SA4

1984 Median Early 1-May-1984 23-May-1984 16-May-1984 14-Apr-1984
Mid 20-Jul-1984 NA 3-Jul-1984 19-Jul-1984
Late 21-Aug-1984 27-Aug-1984 5-Sep-1984 NA

1988 Dry Early 10-Apr-1988 NA 27-May-1988 27-May-1988
Mid 15-Jul-1988 5-Jul-1988 NA 30-Jul-1988
Late 1-Sep-1988 22-Aug-1988 15-Aug-1988 NA

1993 Wet Early 10-May-1993 16-May-1993 25-May-1993 NA
Mid 29-Jul-1993 NA NA NA
Late 14-Aug-1993 4-Aug-1993 NA 30-Sep-1993

1999 Median Early 25-Apr-1999 1-May-1999 24-Apr-1999 26-May-1999
Mid 14-Jul-1999 NA 13-Jul-1999 13-Jul-1999
Late 16-Sep-1999 6-Sep-1999 14-Aug-1999 NA

2002 Dry Early 19-May-2002 25-May-2002 18-May-2002 18-May-2002
Mid 6-Jul-2002 NA 5-Jul-2002 NA
Late 23-Aug-2002 14-Sep-2002 7-Sep-2002 7-Sep-2002

2011 Wet Early 15-Jul-2011 NA NA 25-Apr-2011
Mid NA NA NA 28-Jun-2011
Late 16-Aug-2011 7-Sep-2011 NA 16-Sep-2011

‘NA’ indicates time points where images with <10% cloud cover were unavailable
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described in section 2.2 above) and on-screen digitizing of National
Agriculture Imagery Program (NAIP) orthoimagery with a minimum
of 285 training samples in low-density wetland areas and a maximum
of 545 training samples in high-density wetland areas (Fig. 2a). We
created a balanced training data set that captured large variability in
both the wetland and non-wetland classes. Wetland training data
were created from (1) a range of wetlands of widely varied types,
sizes, and ephemeralities, and (2) a range of ephemeralities from across
individual wetlands (i.e., training data were created from both wetland
centroids and from vegetated wetland edges). Non-wetland training
data were created to capture a range of non-wetland cover types. To
minimize potential biases associated with varied moisture conditions
over time, we merged training data created independently for each of
the three RapidEye scenes to create a consolidated training dataset for
wetland predictions within each sampling area. We defined each train-
ing observation as wetland [1] or non-wetland [0] to create a binominal
dependent variable.

Using the field and digitized training data, we predicted wetland
probability for each RapidEye image using Random Forests (RF;
Breiman, 2001) in the R package randomForest (Liaw & Wiener, 2002;
Fig. 2b). For binary classifications using Random Forests, p is the
predicted probability of “success” (in this case, presence of water),
where probabilities of 1 (water occurrence) and 0 (non-occurrence)
are symmetrical (Cutler et al., 2007; Hastie et al., 2001; Liaw &
Wiener, 2002).

As a nonparametric bootstrapped decision tree method, Random
Forests: (1) affords strong predictive capacity for binominal models,
(2) minimizes bias in sparse feature spaces (Biau, 2012), (3) accounts
for parameter interactions (Breiman, 2001), and (4) is capable of han-
dling complex nonlinear relationships. Additionally, the convergence
of the plurality in the votes matrix scales to a probability distribution di-
rectly comparable to a logistic regression model (Cutler et al., 2007,
Hastie et al,, 2001; Liaw & Wiener, 2002) and has been used extensively
in species distribution modeling (e.g., Cutler et al., 2007). The model was
predicted using the R package ‘raster’ (Hijmans et al., 2014) to create a
raster representing the probability (p = 0-1) of a pixel being inundated
with water (Fig. 2b).

For the purpose of estimating model performance, we classified
pixels with p > 0.65 as wetlands (Fig. 2¢). As an additional evaluation
of model performance, at the class level, we performed sensitivity anal-
yses on a probability threshold p > 0.65 as wetlands (Fig. 2c), evaluating
difference in sensitivity-specificity (Fig. A1) across a range of probability
thresholds with 0.05 breaks. With our data, a p > 0.65 is likely a fairly
aggressive probability threshold but is also commonly used for RF clas-
sification models (e.g., Breiman 2001). The sensitivity test supports
using a p = 0.65 threshold as a stable measure of error and performance
(Fig. A1) making it useful for validation purposes where a “true” contin-
uous distribution is not available for assessing residual model error.

24.1. RapidEye model fit and performance

For all RapidEye RF predictions, we assessed model fit using out-of-
bag (OOB) error, an estimate of internal model error (Fig. 3A). We calcu-
lated OOB error by conducting 5000 bootstrap replicates with replace-
ment using a 34% data-withhold (Breiman, 2001; Fig. 3A). We tested
overall model significance using 1000 permutations (Murphy et al.,
2010). We generated p-values for the model significance tests using a
non-parametric bootstrap: randomizing the wetland training observa-
tions 1000 times, and then building a Random Forests model for each
randomization to create a null distribution of OOB error (Murphy et
al., 2010). We considered a model to be significant if it was below the
first percentile on the OOB error distribution (p < 0.01).

We assessed model performance by performing 999 bootstrapped
cross-validations of all RapidEye RF models (n = 12; Fig. 3B). Each
bootstrap (n = 999) consisted of a 10% data-withhold through the en-
tire RF model and 5000 RF bootstrap replicates (34% data withhold for
each replicate), followed by prediction to the 10%-withheld data from

the entire model (Evans et al., 2011; Murphy et al., 2010). We reported
model performance as “model performance percent correctly classified”
(PCCp), the percentage of classifications (overall [wetland, non-
wetland]) correctly matching their true status.

Lastly, we evaluated the stability of our models by plotting the
predicted wetland probabilities from the final RF model versus the pre-
dicted wetland probabilities derived from the 999-fold bootstrapped
cross-validations. To do so, we indexed the estimated probabilities asso-
ciated with each withheld wetland data point in the cross-validation
tests of each model. We then fit the test model without the withheld
data and predicted the probabilities for the data withhold.

2.4.2. RapidEye model validation

We validated all RapidEye wetland ephemerality models for which
temporally concurrent NAIP imagery was available (Fig. 3C): SA1
(2011 [wet], 2013 [moderate]), SA2 (2012 [dry]), and SA3 (2010
[moderate], 2012 [dry]). We created 150 wetland and 150 non-wetland
validation points in ArcMap for each NAIP image via on-screen
digitization. We intersected these points with the final wetland model
predictions as a true independent validation dataset. We reported
model validation accuracy as “validation percent correctly classified”
(PCC,; Fig. 3C).

2.5. Wetland domain

For each sampling area, we generated a raster representing the gra-
dient of wetland inundation across years of varied moisture conditions
(wetland domain). This was done solely for the purpose of creating a
training dataset for predictions of the Landsat images (described
below in Section 2.6). To generate the wetland domain raster, we creat-
ed a cumulative probability raster by summing the probabilities from
each of the three classified RapidEye images within each sampling
area. We then divided all summed probabilities by the maximum
value of the sums across each raster to rescale the cumulative distribu-
tion (Fig. 2c; Fig. 4).

2.6. Prediction of Landsat wetland gradient

To capture the spatial gradient of wetland ephemerality, we took a
10% stratified random subsample (strata defined below) of the wetland
domain, weighted by the cumulative probability distribution estimates
(Fig. 2d). The stratified random sample was drawn from points
representing the cell-centers of a 30-meter resolution Landsat scene to
prevent multiple sample points from occurring in the same Landsat
pixel, which would introduce pseudoreplication (Hurlbert, 1984). We
randomly selected a weighted sample of points associated with each
stratum to capture the gradient in wetland ephemerality according to
the observed distribution of wetland types in each sampling area. As
there were more wetlands composed of higher probability pixels than
lower probability pixels across the gradient, we assigned a greater
number of points for wetland pixels that were classified with higher
probabilities, minimizing zero-inflation. The following sample sizes
were used for the strata: Stratum 1 (p 2 0.65 and p <0.70) n = 100; Stra-
tum 2 (p>0.70 and p < 0.80) n = 200; Stratum 3 (p > 0.80 and p < 0.90)
n =500, and Stratum 4 (p > 0.90) n = 800. A complementary sample of
1600 points was created from pixels with p < 0.65 to represent the non-
wetland class. This gradient sample formed the training data to build
the subsampling relationship with the Landsat data.

We predicted wetlands in Landsat images matching the spatial
extent of the RapidEye data from three time points per growing season
across six specified years (1984, 1988, 1993, 1999, 2002, 2011) using RF
models (Fig. 2e). We trained the Landsat models by assigning Landsat
spectral data and component values to the stratified random samples
generated from the method described above. The model result was a
probability raster (0-1), where pixels p > 0.65 were classified as
wetlands for the purpose of model validation.
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Fig. 3. Derivation of statistics used to evaluate each class of models. For the Random Forest models (A), model fit was assessed using out-of-bag (OOB) error. Model performance for both
RapidEye and Landsat was assessed with PCC, (model performance percent correctly classified) from the bootstrapped cross-validation (B). Validation of the RapidEye predictions (C) was

evaluated as “model validation” and reported as PCC, (validation percent correctly classified).

2.6.1. Landsat model fit and performance

We evaluated model fit and performance of all Landsat RF models
using the same methods as for the RapidEye RF models (see Section
2.4.1. and Fig. 3A-B), with the exception of the PCC, step (Fig. 3C).
Due to the fact that (1) freely available high resolution imagery (e.g.,
NAIP) does not exist for the full temporal span of Landsat images
employed and (2) field sampling efforts across the full 30-year temporal
series were not realistic, traditional remote sensing validation methods
were untenable. Accordingly, model fit and validation statistics for the
Landsat RF models did not provide what would be considered a fully
independent accuracy assessment, but instead evaluated the ability of
the Landsat analyses to replicate the RapidEye data analyses.

2.7. Spectral separability

We used nonmetric multidimensional scaling (NMDS) to: (1)
evaluate the ability of RapidEye and Landsat imagery to spectrally dis-
criminate between wetland and non-wetland classes, and (2) identify
a gradient of wetland ephemerality. NMDS is a nonparametric multivar-
iate ordination approach that quantifies the degree of dissimilarity

between observations based on a matrix of Euclidean distance
(Kruskal, 1964), which can be interpreted as a gradient of membership
across a low-dimensional space. As such, NMDS allowed us to visualize
the degree of separability between spectra associated with the wetland
and non-wetland training data points.

We scaled the spectral values for the RapidEye (5 bands) and
Landsat data (6 bands, 4 components) associated with the wetland
and non-wetland training data, and plotted three NMDS dimensions
for each sensor. In addition to evaluating separability between the two
classes, we plotted the results according to predicted probability of
inundation, with a color ramp distributed equally into 10 probability
classes to demonstrate spectral separability across the ephemerality
gradient.

3. Results
3.1. High-resolution (RapidEye) wetland predictions

RF predictions generated from the high-resolution RapidEye data for
all four sampling areas across the PPPR (Fig. 5) exhibited high model fit.
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Fig. 4. Examples of RapidEye probabilistic predictions used to generate a raster of cumulative wetland probabilities in SA3. To calculate the cumulative wetland probabilities, estimated
wetland probabilities were summed from predictions of RapidEye data collected across three years of varied moisture conditions and divided by the maximum value of the calculated
sums. Wetland probabilities were calculated from RapidEye images predicted for a “dry” (2012), “moderate” (2013), and “wet” year (2011).

Across the four sampling areas, overall OOB errors ranged from 3.14
to 15% (Table 2), with a mean OOB error of 6.1%. In all probabilistic
predictions, OOB error was higher for the wetland class (4.0-18.0%;
mean 8.0%) than for the non-wetland class (1.9-12.0%; mean 4.2%).
The bootstrapped cross-validation revealed high model performance
for all RapidEye prediction models, with a mean PCC, of 94%
(range = 70.2-100%; see Table A1). Although we observed compara-
tively lower PCC, for a few of the RapidEye models, the majority of
PCC, values exceeded 90% (Fig. 6). When models were validated against
independently-derived validation data, all PCC, estimates were >91%
(range = 91.0-97.7%; Table 3). All models were highly significant
(p < 0.001; Table A1) using a non-parametric bootstrap (Evans &
Murphy, 2015; Murphy et al,, 2010) and stable (Fig. 7).

In general, model fit increased as amount of moisture increased
(Table 2). Although OOB error was low overall, the highest OOB error
corresponded with classifications at “dry” time points, when overall
inundation was at a minimum, in all sampling areas but SA4. Conversely,

low OOB error generally corresponded with image classifications from
“wet” time steps (Table 2). The lowest and most uniform OOB error
was observed for wetland classifications in SA4 in northeastern
Minnesota within the Northern Tallgrass Prairie, with <5% OOB error
across all three time steps of varied moisture conditions (Table 2). In con-
trast, SA2, in central South Dakota within the Northern Shortgrass Prai-
rie, exhibited the highest OOB under both “wet” and “dry” time steps,
and the second highest OOB error under “moderate” moisture conditions
(after SA3; Table 2).

3.2. Moderate-resolution (Landsat) wetland predictions

When we upscaled RapidEye wetland predictions to moderate-reso-
lution Landsat images from each of the corresponding sampling areas
(Fig. 5), we observed high model fit in the resulting probability esti-
mates (OOB error mean = 0.8%; range = 0.3-1.5%; Table 4, Table A2).
Similar to predictions using the RapidEye data, mean OOB error from
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Fig. 5. Examples of probability predictions generated for each of the four sampling areas. For each sampling area, we depict examples of a raw RapidEye image (“RapidEye”), a wetland
prediction performed on the RapidEye image (“RapidEye Prediction”), and a wetland prediction performed on Landsat data (“Landsat Prediction”).

the RF Landsat models was higher for the wetland class (mean = 1.8%;
range = 0.6-3.2%; Table A2) than for the non-wetland class (mean =
0.02%; range = 0-0.3%; Table A2). Root-mean-square error ranged
from 0.06 to 0.12 (Table A2). Overall, OOB error was highly uniform
when averaged across years (0.7-1.0%), precipitation conditions
(0.83-0.91%), and season (0.73-0.96%), indicating that RF predictions
performed comparably across all four sampling areas in the PPPR
(Table 4). Furthermore, we observed high model performance for
all Landsat model predictions, with a mean PCC, of 84.7% (range =
65.2-92.5%; Table A2). Some bootstrapped cross-validations (4 out of
52 models) returned relatively low PCC, (60-70%), but the majority
of models performed substantially better, with PCC, values over 80%
(41 out of 52 models; Fig. 6, Table A2). As with the RapidEye models,
all models were highly significant (p < 0.001) compared to a null
distribution (non-parametric bootstrap) and stable (Fig. 7).

Table 2

Out-of-bag (OOB) model error results from Random Forest predictions of RapidEye scenes
across three years of varied moisture conditions (dry, moderate, wet) per sampling area.
Mean OOB error is calculated across sampling areas under each moisture condition.

Out-of-bag error (%)

Area Dry Moderate Wet
SA1 11.21 424 333
SA2 15.00 543 5.98
SA3 8.13 5.90 345
SA4 3.14 432 3.22
Mean 9.37 497 4.00

3.3. Spectral separability

NMDS plots of the RapidEye spectral data in SA1 and SA3 showed
distinct clustering of wetland and non-wetland classes (Fig. 8). Though
wetlands and non-wetlands classified from Landsat were still relatively
clustered, there was overlap of wetlands with the non-wetland spectral
space. Wetlands of intermediate probabilities/ephemeralities are inter-
mediate in spectral sign as they share spectral characteristics with both
wetlands and non-wetlands. Based on this observation, we argue that
our classification of surface water inundation across the landscape as a
gradient enables us to capture wetlands across a range of ephemerali-
ties. Plots of the wetland probabilities revealed that wetlands in
the overlapping spectral region (orange and green points) were of inter-
mediate probabilities spanning the gradient, representing wetlands of
intermediate ephemeralities (view publication online for color).

4. Discussion

We generated highly accurate predictions of inundation across
wetland ephemerality gradients, as well as across a diverse range of
landscapes and wetland types in the PPPR. By leveraging fine-scale
remotely sensed data (RapidEye), we were able to exploit freely available,
moderate-resolution data (Landsat) to assess wetland ephemerality
across numerous given time points representing a range of precipitation
conditions. By characterizing wetlands as both spatial and temporal
gradients versus homogenous objects belonging to a single category, our
models capture ecological processes and the dynamic nature of wetlands.
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Fig. 6. Probability density function (PDF) plots of model performance percent correctly
classified (PCCp) from all bootstrapped cross-validations of all RapidEye (n = 12) and
Landsat RF models (n = 52). Each PDF curve represents a separate RF model.

The gradients of wetland inundation and ephemerality are extremely
flexible and can be classified for project-specific goals (Evans &
Cushman, 2009) to support a wide range of research objectives and
analytical approaches.

4.1. High model fit across all sampling area predictions

We observed high model fit for predictions of wetlands of varying
size (ranging from <0.05 ha to 21600 ha) and ephemerality across all
PPPR ecoregions, regardless of the spatial resolution of the source data
(RapidEye or Landsat) or the underlying precipitation conditions at
each time point (“dry,” “moderate,” or “wet”). The RapidEye data's
higher dynamic range (associated with bit depth and the addition of
the red-edge band) and increased autocovariance (attributed to higher
spatial resolution; Ju, Gopal, & Kolaczyk, 2005) resulted in higher vari-
ability in model error for RapidEye predictions (OOB = 3.1-15.0%;

Table 3

RapidEye model validation using an independent validation dataset (150 wetlands/150
non-wetlands) derived from NAIP imagery. RapidEye acquisition dates are listed with cor-
responding NAIP acquisition dates, when available. ‘PPT" depicts the relative precipitation
conditions for each year. ‘PCC,’ is the validation percent correctly classified (Total % [non-
wetland class, wetland class]).

Area  RapidEye NAIP ‘PPT’ PCC, (%)

SA1 12 September 2012 NA - -
5 May 2013 23 August 2013 Moderate  93.0 (100, 86.0)
8 July 2011 21 September 2011 Wet 91.3(99.3,83.3)

SA2 27 September 2012 3 October 2012 Dry 91.0 (97.3,84.7)
10 June 2013 NA - -
3 June 2011 NA - -

SA3 22 ]uly 2012 6 September 2012 Dry 97.0 (97.3,96.7)
26 July 2010 3 August 2010 Moderate  97.7 (100, 95.3)
3 May 2011 NA - -

SA4 25 ]June 2012 NA - -

8 September 2011 NA - -
30 July 2011 NA - -

NA indicates that no temporally matched imagery is available.

Table A1) compared to Landsat (OOB = 0.4-1.2%; Table A2). The ex-
tremely low OOB error rates associated with the Landsat predictions like-
ly resulted from the smoothing effect that occurred when we upscaled
our predictions from RapidEye to Landsat (Vanderbilt et al., 2007).

As expected, we observed higher OOB error in the wetland class
compared to the non-wetland class for both RapidEye and Landsat pre-
dictions. Given the dramatic fluctuations in surface water inundation
within and across years, we expected greater variation in the wetland
class. In some years, a pixel classified as a wetland in the training data
may not be inundated and would not be classified as a wetland by the
RF model. Accordingly, wetland class predictions might exhibit higher
model error rates than predictions of the non-wetland class due to the
higher variance associated with wetland features through time.

Model fit for the RapidEye RF predictions was highest in the wettest
year for all sampling areas but SA4 (Table 2). However, SA4 (Agassiz
NWR) had the lowest and most uniform OOB error across years of all
the sampling areas (mean = 3.6%, range = 3.1-4.3%; Table 2). The
high, uniform model fit provides insight into the spatial-temporal
dynamics of wetlands in SA4. Located in the far eastern PPPR, SA4 re-
ceives more precipitation than any of the other PPPR sampling areas in
this study. Wetlands and shallow, open water cover over 60% of the
refuge and are managed through an extensive network of dikes and
impoundments (Agassiz National Wildlife Refuge Comprehensive
Conservation Plan, 2005). As a result, water levels and inundation remain
relatively stable throughout the growing season and across years, leading
to less variability in model error rates across the temporal series.

Model fit was lower for sampling areas in drier ecoregions (SA1 and
SA2; Table 2), though still high (OOB error = 3.3-15.0%; Table 2). Both
of these sampling areas are in the shortgrass prairie, which is generally
more arid than the mixed-grass and tallgrass prairies. In the drier sam-
pling areas, wetland densities are relatively low and tend to be located
within grazed rangelands. Although many wetlands have been altered
to increase water storage, the majority of natural wetlands are highly
ephemeral wet meadows or occur along riparian corridors. Linear fea-
tures, such as riparian drainages, may be more difficult to distinguish
from the surrounding upland landscape (Congalton et al., 2002;
Johansen et al., 2007) and can cause spectral confusion if the feature
widths are less than the image resolution, resulting in the detection of
subpixel signals (Congalton et al., 2002). Despite the inherent difficul-
ties in predicting wetlands in drier areas with fewer distinct wetlands,
our model still yielded highly accurate predictions using both RapidEye
and Landsat data.

4.2. Model performance and stability

We observed the highest model performance in SA4 (PCC, = 90.0-
92.5%; Table A2), located in the far northeastern extent of the PPPR. This
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goes to blue as probability of wetland occurrence increases to 1.



532

result is congruent with the extremely high model fit (lowest OOB error
of all four sampling areas) observed for wetland predictions in SA4
(Table A2). Field-based training data for SA4 came from Agassiz NWR,
which is located on a glacial lake and encompasses a black-spruce-
tamarack bog. The high model performance likely results from the com-
paratively greater stability in wetland surface water inundation across
the sampling area. Accordingly, there is likely less variability in spectral
signatures across years.

Model performance (PCC,) was lowest for models developed to pre-
dict wetlands in SA3 (PCC, = 65.2-86.8%; Table A2). SA3 contains a
high density of inundated wetlands characteristic of the highly glaciated
landscape of the Prairie Pothole Region. Here, surface water accumu-
lates in topographic depressions to form depressional wetlands charac-
terized by temporally variable vegetation communities and highly
fluctuating surface water extents (Kantrud et al., 1989). As a result,
lower model performance is likely due to the high variability in wetland
inundation and persistence within and across years.

We observed intermediate degrees of model performance in SA1
(PCC, = 75.3-92.2%; Table A2) and SA2 (PCC, = 83.1-92.4%; Table
A2), both in the shortgrass prairie ecoregion. Here, wetlands are
comparatively more difficult to predict, due to the challenges in
distinguishing between dry wetlands and the surrounding uplands.
We observed a higher proportion of pixels classified with intermediate
probabilities of wetland occurrence in these sampling areas. Given
our 0.65 wetland classification probability threshold, several training
data points representing true wetlands may not have been classified
as wetlands by our RF models. This may be especially true in years
where wetlands exhibit large fluctuations in inundation. This
observation was supported by the results of our independent validation
of our RapidEye RF predictions (Table 3; Fig. 3C) with NAIP aerial
orthoimagery-derived validation points. We found that PCC, was
considerably higher than PCCp, indicating that model performance
would likely be much higher if we were to validate our models using
either wetland observations generated from high-resolution, temporal-
ly-matched images, or ground-truthed field survey data.

Overall, models developed for probabilistic predictions of both
RapidEye and Landsat data were highly stable, showing strong correla-
tions between the models' wetland probability estimates and the
probability estimates resulting from the cross-validation tests on the
withheld data (Fig. 7). One observable discrepancy was for the plot of
the Landsat models developed for wetland predictions in SA3, in
which the models slightly underestimated the wetland probability
predictions (Fig. 7). As described above, we believe that lower density
of intermediate wetland probabilities from the RF models (observed)
compared to the densities from the bootstrapped cross-validations
(predicted) in SA3 may be explained by the highly fluctuating nature
of wetlands across that sampling area.

4.3. Value of wetland gradient predictions

Despite potential cross-classification errors, identifying areas classi-
fied as highly ephemeral wetlands may be informative. Inundated

Table 4
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agricultural fields, such as those prevalent in the eastern PPPR, may
share some of the same ecological functions as highly ephemeral wet-
lands, providing important ecosystem services, such as breeding habitat
for amphibians, soil moisture recharge, or waterfowl foraging grounds
(e.g. Elphick, 2000). In some cases, flooded agricultural fields may hold
water for extended periods of time because they were once wetlands
that were tilled and converted to cropland (Wright & Wimberly, 2013).

The impact of spectral confusion on wetland gradient predictions
depends on the intended application of our method. If the objective of
wetland classification is to identify currently functioning wetlands,
then wetland predictions may require post hoc correction. One way
this could be done is by masking tilled area using available spatial data
such as the Cropland Data Layer (CDL) provided by the National Agricul-
tural Statistics Service (Johnson, 2013).

Wetland commission errors in semi-arid regions are a known issue.
For example, Baker et al. (2006) found that over-prediction of wetlands
corresponded with flood-irrigated fields, which exhibited similar
elevation, soils, and spectral signatures as wetlands (Baker et al.,
2006). Other potential sources of spectral overlap with vegetated wet-
lands in this region include shrubs (Daniels, 2006), and wet, bare soils
or grassland fire scars (Ozesmi & Bauer, 2002). By using a probabilistic
modeling framework, rather than a binary approach, we overcame
many of the challenges associated with commission errors, as we
observed that features that overlap spectrally were generally classified
with much lower probabilities than true wetlands (e.g., irrigated
croplands were classified with probabilities ranging from ~0.2-0.4).
However, even more prominent commission errors have been found
when classifying wetlands in forested landscapes, where areas of
dense canopy cover and higher moisture tend to be confused with
forested wetlands (e.g., Augusteijn & Warrender, 1998; Li & Chen,
2005; Maxa & Bolstad, 2009). As our study area focuses on grassland
systems, further research is needed to test the efficacy of our approach
in landscapes with dense forested overstory.

4.4. Use of high-resolution data to leverage moderate-resolution data

We used high-resolution data to train moderate-resolution data,
which resulted in a well-fit model that can be applied to predict wetland
inundation conditions captured in freely available long-term Landsat
data. This mirrors other multiscale research efforts that integrate multi-
ple data types, including LiDAR and optical or visible/infrared data
(e.g., SPOT, Landsat; see Geerling et al., 2007; Huang et al., 2014;
Hudak et al., 2002; Maxa & Bolstad, 2009), or radar and visible/infrared
data (e.g., Augusteijn & Warrender, 1998; Bwangoy et al., 2009; Li &
Chen, 2005; Toyrd et al., 2001; Zhu & Tateishi, 2006). These upscaling
approaches have been shown to yield more accurate model classifica-
tions than imagery solely classified at the higher resolution (De Fries
et al.,, 1998; Hay et al., 2002; Knight et al., 2013; Melendez-Pastor et
al.,, 2010). By using this approach and thresholding the predicted
probabilities at 0.65, we were able to identify wetlands across a range
of sizes, including small wetlands, which are notoriously difficult to
map (Fig. 9; Gallant, 2015; Ozesmi & Bauer, 2002). If we had not used

Out-of-bag (OOB) model error (representative of model fit) from Random Forests predictions of Landsat images using a 34% data-withhold at each RF bootstrap iteration (Fig. 3). OOB error
was calculated for each sampling area across all six years. OOB error was averaged across years with similar yearly precipitation (‘Yearly PPT") and across growing season time periods
(early, mid, late). Mean OOB error was calculated across sampling areas for all years, precipitation conditions, and time periods across the growing seasons.

Out-of-bag error (%)

Year Yearly PPT Season
Area 1984 1988 1993 1999 2002 2011 Dry Median Wet Early Mid Late
SA1 130 1.16 1.10 1.19 0.82 0.73 0.99 1.25 0.91 1.16 0.97 1.03
SA2 0.90 1.10 1.10 0.78 1.13 0.87 1.11 0.84 0.99 1.07 0.73 1.08
SA3 0.54 0.48 0.71 1.01 0.87 0.64 0.68 0.78 0.67 0.81 0.53 0.78
SA4 0.89 0.75 0.96 0.62 0.75 0.55 0.75 0.76 0.76 0.81 0.70 0.76
Mean 0.91 0.87 0.97 0.90 0.89 0.70 0.88 091 0.83 0.96 0.73 0.91
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high-resolution data, we would likely have missed wetlands smaller
than the 30-meter pixel size, thus decreasing model performance. In
addition, we were able to make highly accurate (OOB, PCC,) and
consistent (Fig. 7) predictions of probability of wetland inundation to
a long temporal series of historical imagery.

4.5. Spectral separability of the wetland gradient

When characterizing wetlands along gradients of ephemerality, the
probability distribution itself represents the relative likelihood that a
pixel is inundated, given its spectral characteristics (e.g., Cutler et al.,
2007; Li & Cutler, 2013). Spectral separability analyses show
that model predictions are describing an ecological gradient by discrim-
inating wetlands of varying ephemerality on the basis of their spectral
signatures (Fig. 8). The high spectral separability of RapidEye data
between wetlands and non-wetlands likely resulted from RapidEye's
high spatial resolution, and well as the contribution of the red-edge
band (Schuster et al., 2012). The red-edge band is sensitive to
differences in plant cover types (Schuster et al., 2012), which may result
in greater spectral separability associated with distinctive wetland
vegetation.

SA1

T oos %7’773

RapidEye

b)

Landsat
dim 1

Spectral overlap between the wetland and non-wetland classes in
Landsat (Fig. 8), however, likely resulted from representing the wetland
data as a continuous ecological gradient. Instead of classifying the data
into two classes (wetland, non-wetland), we predicted a full gradient
of wetland occurrence. Intermediate wetland probabilities in the area
of spectral overlap represent wetland flux, where wetlands may contain
standing water during some time periods and not in others. Further-
more, intermediate wetland probabilities could result from sub-pixel
signals, where wetlands may exist but are smaller than the pixel
resolution, or from adjacent wetlands with probabilities on extreme
ends of the gradient occupying the same pixel. If no gradient existed,
the clusters would instead be highly constrained and distinct from
each other (Somers et al,, 2011).

4.6. Probabilistic predictions

“Classifying” wetland inundation probabilistically enhanced our
ability to depict ecological continua, highlighting both wetland change
(probability of wetland inundation at time 1 compared to time 2) and
inherent wetland stochasticity. Wetland gradients occur not only at
the landscape scale, but also within individual wetlands. We observed

SA3

L wip
dim 1

dim 3

Fig. 8. Three-dimensional visualization of spectral separability analyses performed using nonlinear multidimensional scaling (NMDS). NMDS plots represent spectral separability of
wetlands of varying probabilities, and were generated for probabilistic predictions of: (a) RapidEye in SA1; (b) Landsat in SA1; (c) RapidEye in SA3; (d) Landsat in SA3. SA1 (located in
an arid region with few wetlands) and SA3 (located in the Prairie Pothole Region, where depressional wetlands predominate) represent the two sampling areas that differed most
with respect to ecoregion and wetland landscape characteristics. The colors of the points correspond to the color scale in the PDF plots in Fig. 7, where the red end of the spectrum
indicates non-wetland predictions [0] and the spectrum goes to blue as probability of inundation increases to 1.
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Fig. 9. Multiscale wetland predictions from SA3. From left to right, images represent (a) raw RapidEye image; (b) cumulative probability raster of RapidEye wetland classifications; (c)

Landsat wetland classification.

probability gradients around wetland edges in both the RapidEye and
Landsat predictions, where the probability of wetland inundation
decreased with increasing distance from the wetland's center. This is
most likely a function of mixed pixel effects along the wetland edges
(Fig. 9). Lastly, since the probability of wetland occurrence is strongly
tied to weather conditions (Beeri & Phillips, 2007; Gémez-Rodriguez
et al., 2010; Johnson et al., 2004; Kahara et al., 2009), a gradient
approach such as ours and other studies that employ a multitemporal
approach (e.g, Rover et al., 2011) may improve information for wetland
management by identifying wetland areas more susceptible to climatic
fluctuations.

4.7. Utility for wetland classification and monitoring

Mapping wetlands over time is critical for conservation, as spatial
and temporal changes to wetland networks will affect landscape-wide
ecological function. Integrating the wetland prediction techniques
developed through this research into planning efforts may provide a
more cost-effective and automated method that enables frequent
mapping of wetlands over a large spatial extent. The cost of acquiring
high-resolution RapidEye data to develop the subsampling relationship
with Landsat may be offset by the potential to identify small, highly
ephemeral wetlands and ability to utilize a 30+ year data repository.
As cloud cover can be problematic during longer-term wet conditions
(Zhu & Woodcock, 2012), methods to identify and mask clouds and
cloud shadows could be employed to generate model predictions from
more time points across the temporal series (e.g., Zhu et al., 2015).
Furthermore, if field sampling is infeasible, costs could be further re-
duced by substituting training data created from temporally-matched
high-resolution data, such as NAIP imagery (1 meter spatial resolution).
Once training data are developed for an area, the classification
framework can be replicated annually. This will allow researchers and
managers to investigate spatial dynamics of probability of wetland
occurrence through time. With the increased availability of very high-
resolution remotely sensed data, accurate wetland classification is
more attainable (Gallant, 2015). However, these data are computation-
ally expensive and are available over a shorter temporal series
compared to Landsat data. Our method effectively leverages high- and
moderate-resolution data to estimate the probability of wetland
inundation and the probability that wetlands are wet through time.

Our approach also complements existing wetland classification
schemes, which have demonstrated the utility of employing multi-
temporal approaches to monitor wetland change and dynamics through
time (e.g., Gbmez-Rodriguez et al., 2010; Knight et al., 2013; Pavri &
Aber, 2004; Rover et al., 2011). We employ a multi-temporal approach
that also yields spatio-temporal wetland predictions, but does so as
probabilities of wetland inundation, which more effectively represents
wetlands as gradients in ephemerality.

4.8. Wetland stochasticity and implications to ecosystem services

Projected changes to temperature, precipitation amount, and precip-
itation timing may profoundly alter wetland hydrology and wetland
ephemerality (Johnson et al., 2005; Ojima & Lackett, 2002). Potential
shifts in wetland ephemerality could have major implications for
primary productivity, wetland-dependent species complexes, and
water availability for human and livestock use. Identifying annual flux
in wetlands is a critical indicator of the ecosystem services that they
can provide (Carpenter et al., 2006; Zedler & Kercher, 2005). In addition,
climate change effects will likely be spatially inhomogeneous (Shaver et
al., 2000), making spatially explicit assessments of ephemerality a criti-
cal need. By creating spatial predictions of wetland ephemerality under
arange of annual weather conditions, we observed “real time” linkages
to climatic variation that can be explicitly linked to climate change in
the future.

5. Conclusions

We presented a flexible methodology to predict wetland ephem-
erality gradients using high spatial-resolution data in combination
with moderate spatial-resolution data with a longer temporal series.
Our intent was to leverage Landsat data, which has been collected
at consistent time intervals over a long temporal series, to predict
wetland inundation fluctuations over a broad range of climatic
(temperature-moisture differences by ecoregion) and inter-annual
moisture (weather) conditions. However, our methodology could
also be used to monitor rapid changes in wetland dynamics over
short time intervals in cases where high temporal-resolution
remotely sensed data are available.

Our study employed probabilistic estimates to characterize wetland
inundation and ephemerality along a gradient, which reflects ecological
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processes and wetland patterns through time more accurately than
discrete classifications. Our predictions were highly accurate and our
method is amenable to broader-scale, semi-automated wetland
monitoring that can provide a cost-effective and detailed complement
to existing wetland classification schemes. Predictions of wetland
ephemerality are valuable to land managers and scientists given the
diverse ecosystem services that wetlands of varying size and ephemer-
ality provide. Moreover, given projected climate change and its implica-
tions for water availability within the Plains and Prairie Pothole Region
and beyond, it is imperative to better understand the effects of climatic
variability upon landscape dynamics and function.
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Appendix A

Table A1

Random Forest model results from prediction of RapidEye images collected across three years per sampling area (‘SA’). ‘PPT’ indicates the relative amount of precipitation for the year
classified, and ‘n’ represents the total number of training points used for the prediction (divided equally into wetland and non-wetland points). For the Random Forests models, the fol-
lowing metrics are reported: Out-of-bag error (‘OOB; representative of model fit) [Total (non-wetland class, wetland class)], producer's accuracy of the wetland class (‘Prod.Acc.Mdl’
[Overall % (min - max)]), user's accuracy of the wetland class (‘Users.Acc.Mdl’ [Overall % (min - max)]), and kappa (a measure of model specificity; [mean (diff. between min and
max)]). For the bootstrapped cross-validations (n = 1000), percent correctly classified (‘PCCp;’ representative of model performance [Mean (min-max)]), producer's accuracy of the wet-
land class (‘Prod.Acc.CV’ [Overall % (min - max)]), and user's accuracy of the wetland class (‘Users.Acc.CV’ [Overall % (min — max)]) are shown. All models were significant at p < 0.001.

Random Forests model Bootstrapped cross-validation

SA  Date PPT n OOB (%) Prod. Acc. Mdl (%)  Users. Acc. Mdl (%) kappa PCC,, (%) Prod. Acc. CV (%) Users. Acc. CV (%)
SA1 12Sep2012 Dry 660 11.2(9.4,13.0) 90.5 (88.5-92.7) 86.7 (84.2-89.2) 0.78 (0.08) 89.1(75.2-100) 90.8 (79.3-100)  87.0 (69.7-100)
SA1 5May 2013 Moderate 660 4.2 (2.1,6.4) 97.8 (96.8-98.9) 93.2 (92.3-94.6) 0.91 (0.03) 95.3(86.0-100) 97.4 (88.9-100) 94.0 (78.8-100)
SA1 8]Jul 2011 Wet 660  3.3(2.1,4.6) 97.6 (96.0-98.3) 95.6 (94.9-96.6) 0.93 (0.02) 96.9 (87.6-100) 97.9 (90.9-100)  95.7 (87.9-100)
SA2 27Sep2012 Dry 920 15.0(12.0,18.0) 89.3 (87.6-91.4) 80.5 (78.5-83.6) 0.71 (0.07) 85.6 (70.2-95.6) 89.9 (80.0-100)  79.9 (63.0-93.5)
SA2 10Jun 2013 Moderate 920 5.4 (4.1,6.7) 95.6 (94.8-97.5) 92.8 (91.8-93.7) 0.89 (0.04) 94.4 (85.6-100) 95.4 (88.2-100)  92.7 (80.4-100)
SA2  3]Jun 2011 Wet 920 6.0(3.0,9.0) 96.9 (95.9-97.7) 91.7 (90.6-93.0) 0.89 (0.03) 94.5(85.6-100) 97.0 (89.4-100)  92.7 (80.4-100)
SA3 22]Jul2012 Dry 900 8.1(5.1,11.2) 94.6 (93.2-96.0) 88.3 (86.8-89.3) 0.83 (0.05) 92.1(81.9-98.9) 95.5(88.6-100) 88.8 (77.8-97.8)
SA3 26]Jul2010 Moderate 900 5.9 (3.6,8.3) 96.1 (94.8-97.1) 91.1 (89.8-92.3) 0.87 (0.03) 94.3 (83.3-98.9) 96.0 (87.5-100) 91.0 (82.2-100)
SA3 3 May2011 Wet 900 3.4(2.9,4.0) 96.8 (96.0-97.7) 95.9 (95.0-96.8) 0.93 (0.02) 96.6 (90.9-100) 96.9 (90.0-100)  96.1 (88.9-100)
SA4 25]Jun2012 Dry 1180 3.1(1.9,44) 98.1 (97.5-98.6) 95.7 (94.9-96.4) 0.94 (0.02) 97.4(90.5-100) 98.3 (94.7-100)  95.9 (88.1-100)
SA4 8Sep2011  Moderate 1180 4.3 (2.5,6.1) 97.2 (96.5-98.1) 93.8 (92.7-94.7) 091 (0.03) 95.7 (89.7-100) 97.2 (90.5-100)  93.8 (86.4-98.3)
SA4 30Jul 2011  Wet 1180 3.2(1.9,4.6) 98.3 (97.9-98.8) 95.6 (95.1-96.8) 0.94 (0.02) 96.6 (91.4-100) 98.2 (93.3-100) 95.4 (86.4-100)
Table A2

Wetland prediction results for Landsat sampling areas (‘SA’) at three points in time across the growing season for six selected years using Random Forest (RF) models. ‘PPT’ indicates the
relative amount of precipitation for the year classified and ‘Season’ represents the time within the growing season. For the Random Forests models, the following metrics are reported: Out-
of-bag error (‘OOB;'representative of model fit [Total (non-wetland class, wetland class)]), root-mean-square error (‘RMSE’), producer's accuracy of the wetland class (‘Prod.Acc.MdI’
[Overall % (min - max)]), user's accuracy of the wetland class (‘Users.Acc.Mdl’ [Overall % (min - max)]), and kappa (a measure of model specificity; [mean (diff. Between min and
max)]). For the bootstrapped cross-validations (n = 1000), percent correctly classified (‘PCCp;’ representative of model performance [Mean (min - max)]), and producer's accuracy
of the wetland class (‘Prod.Acc.CV' [Overall % (min - max)]), and user's accuracy of the wetland class (‘Users.Acc.CV’ [Overall % (min - max)]) are shown. All models were significant at
p <0.001.

Random Forests model Bootstrapped cross-validation

SA  Date PPT  Season OOB (%) RMSE  Prod. Acc. Mdl (%) Users. Acc. Mdl (%) kappa PCC, (%) Prod.Acc.CV (%)  Users. Acc. CV (%)
SA1 1May84 Med Early 1.4(0,3.0) 0118 765 (746-783)  72.0(69.5-74.2)  0.53(0.06) 76.5(68.7-83.5) 79.2(70.2-88.7) 72.1(59.0-83.6)
SA1 20]Jul 84 Med Mid 1.2 (0,2.6) 0.109 78.1(76.3-80.2)  75.5(73.4-78.2) 0.57 (0.07) 78.6(71.6-86.0) 80.6 (71.4-90.7) 75.3 (62.3-86.9)
SA1 21Aug84 Med Late 13(0,28) 0115 782(76.7-80.1)  74.0(719-762)  0.56(0.05) 78.1(69.5-87.6) 80.7 (72.0-89.8) 74.0 (59.8-86.9)
SA1 10Apr88 Dry Early 12(0,26) 0111 76.0(73.9-77.9) 69.0(67.0-72.2)  0.50(0.07) 753 (67.0-83.9) 78.6(70.3-88.1) 69.2(52.5-81.0)
SA1 15Jul88 Dry Mid 12(0,26) 0109 82.1(80.4-84.1)  750(73.1-77.2)  0.61(0.05) 802 (72.4-87.6) 84.3(75.7-92.2) 75.1 (60.7-86.1)
SA1 1Sep88  Dry Late 11(0,23) 0103 78.0(763-79.8) 733 (71.6-752) 056 (0.06) 77.3(68.3-85.6) 802 (68.0-89.5) 73.2(59.8-86.9)
SA1 10May93 Wet Early 1.4(0,29) 0.116 82.5(80.8-84.1)  78.0(75.7-79.9)  0.64 (0.06) 81.9(74.9-89.3) 84.5(76.0-93.5) 78.2(66.4-90.2)
SA1 29Jul93  Wet Mid 09(0,19) 0095 85.6(84.0-87.6) 84.0(82.4-857)  0.72(0.05) 86.0(79.4-93.0) 87.5(79.5-96.5) 84.1(73.0-91.8)
SA1 14Aug93 Wet Late 1.0(0,2.2) 0.101 84.7 (83.0-86.2)  83.3(81.7-85.0) 0.70 (0.05) 85.1(78.6-93.0) 86.6(79.5-99.1) 83.4(69.7-92.6)
SA1 25Apr99 Med Early 1.0(0,22) 0.101 864 (84.7-883) 81.6(79.8-834)  0.71(0.06) 85.1(77.7-91.7) 88.1(80.0-96.3) 81.8 (71.3-92.6)
SA1 14Jul99 Med Mid 1.1(0,23) 0103 89.4(87.7-90.8)  83.8(82.5-853)  0.75(0.05) 87.6(80.6-92.6) 90.7(83.2-98.1) 83.8 (72.1-92.6)
SA1 16Sep99 Med Late 1.5(0,3.2) 0.122 86.6 (85.0-88.2) 82.5 (80.9-84.3) 0.72 (0.05) 85.6(77.7-91.7) 88.1(78.8-96.0) 82.6(72.1-91.8)
SA1 19May02 Dry Early 1.0(0,22) 0.101 82.3(80.8-83.9) 77.4(75.7-79.5)  0.63(0.06) 81.4(72.8-88.4) 843 (76.0-93.1) 77.4(65.6-88.5)
SA1  6Jul 02 Dry Mid 0.8(0,1.8) 0091 81.6(80.0-83.2) 79.7(78.0-81.7)  0.64(0.05) 81.9(75.7-88.9) 83.6(75.2-92.2) 79.6 (67.2-90.2)
SA1 23Aug02 Dry Late 06(0,1.3) 0079 81.9(802-833) 79.1(76.6-80.8)  0.64 (0.06) 81.9(74.0-89.3) 83.8(73.7-93.5) 79.3 (68.9-90.2)
SA1 15]Jul 11 Wet  Mid 0.6 (0,1.3) 0.079 93.2 (92.3-94.3) 90.4 (89.3-91.7) 0.85(0.04) 92.2(85.6-97.1) 94.1(86.0-100) 90.3 (81.1-96.7)

(continued on next page)
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Table A2 (continued)

Random Forests model

Bootstrapped cross-validation

SA  Date PPT  Season OOB (%) RMSE  Prod. Acc. MdlI (%) Users. Acc. Mdl (%) kappa PCC,, (%) Prod.Acc.CV (%)  Users. Acc. CV (%)
SA1 16Augl1l Wet Late 0.7 (0,1.2) 0.081 89.9(88.7-91.2) 84.9 (83.4-86.2) 0.77 (0.04) 88.4(82.7-94.6) 91.2(84.5-97.4) 85.0(75.4-93.4)
SA2 23May84 Med Early 1.0(0,2.1) 0.101 95.2 (94.2-96.3) 86.8 (85.6-87.9) 0.82 (0.03) 91.0(85.2-95.2) 95.4(89.2-99.2) 86.9 (79.5-95.9)
SA2 27 Aug84 Med Late 1.1(0,2.3) 0.106  92.9 (91.7-94.2) 83.7 (82.4-84.9) 0.77 (0.03) 88.6(83.1-93.5) 93.1(86.2-98.4) 83.8(71.9-93.2)
SA2 5]ul 88 Dry Mid 0.9 (0,1.8) 0.094 89.3 (88.0-90.8) 81.9 (80.4-83.4) 0.72 (0.05) 85.9(80.4-92.8) 89.4(82.6-97.0) 81.9(71.2-90.4)
SA2 22 Aug88 Dry Late 0.9 (0,1.7) 0.092 85.8 (84.5-87.2) 82.3 (80.8-83.7) 0.69 (0.05) 84.5(77.3-90.0) 86.0(78.2-95.4) 82.3(71.2-91.8)
SA2 16May93 Wet Early 1.2(0,2.3) 0.108  95.9 (95.1-96.5) 88.4 (87.3-89.5) 0.85 (0.03) 92.4(87.9-95.9) 96.0(90.3-100) 88.4 (77.4-95.9)
SA2 4 Aug93 Wet Late 1.2 (0,2.5) 0.111  93.7 (92.7-94.9) 85.0 (83.5-86.1) 0.79 (0.05) 89.7 (84.5-94.5) 93.7 (87.2-99.2) 85.0(74.7-93.8)
SA2 1May99 Med Early 1.1(0,2.3) 0.106  93.8 (92.8-95.0) 86.5 (85.3-87.6) 0.81 (0.03) 90.4 (84.8-94.1) 94.0(87.5-99.2) 86.6(76.0-95.2)
SA2 6Sep99 Med Late 0.8 (0,1.7) 0.091 94.1 (93.0-95.1) 89.1 (88.2-90.3) 0.84 (0.03) 91.7 (87.3-96.6) 94.2(88.3-99.2) 89.2 (80.8-95.9)
SA2 25May02 Dry Early 1.0 (0,2.1) 0.101  93.6 (92.6-94.8) 85.8 (84.6-86.8) 0.80 (0.04) 90.0 (83.1-94.5) 93.7 (85.2-99.2) 85.7 (77.4-94.5)
SA2 14Sep02 Dry Late 1.2 (0,2.5) 0.111 84.7 (83.3-86.3) 80.7 (79.4-82.2) 0.66 (0.05) 83.1(76.6-89.0) 84.9(77.3-91.8) 80.9 (68.5-91.1)
SA2 7Sep11 Wet Late 1.2 (0,24) 0.109 94.8 (94.0-95.7) 89.2 (88.1-90.2) 0.57 (0.07) 92.4(86.9-96.6) 94.9 (89.0-99.3) 89.3 (80.1-96.6)
SA3 16May84 Med Early 0.7 (0, 1.3) 0.082 77.4(76.0-78.8) 73.2 (71.6-75.1) 0.51(0.05) 75.5(67.2-82.9) 77.1(68.5-85.9) 73.1(58.3-84.6)
SA3  3]ul 84 Med Mid 0.5 (0,0.9) 0.067 68.9 (67.2-70.6) 66.6 (64.2-68.7) 036 (0.05) 67.8(59.8-75.2) 68.5(60.4-77.7) 66.7 (55.1-78.8)
SA3  5Sep 84 Med Late 0.5 (0,1.0) 0.072 68.1(66.7-77.1) 67.6 (65.5-69.8) 035 (0.07) 67.5(59.8-76.5) 67.8(58.7-78.6) 67.8(53.8-76.9)
SA3 27May 88 Dry Early 0.7 (0, 1.5) 0.086 69.9 (67.8-71.5) 67.9 (65.2-70.0) 0.38 (0.07) 69.1(60.4-76.5) 69.7 (60.9-80.8) 68.1(56.4-78.8)
SA3 15Aug88 Dry Late 0.4 (0,0.8) 0.062 66.2 (64.5-68.1) 63.9 (61.9-66.1) 031 (0.06) 65.2 (58.5-75.5) 65.9(57.8-75.4) 64.1 (50.6-75.6)
SA3 25May93 Wet Early 0.6 (0,1.2) 0.078 77.2 (75.8-79.0) 72.7 (70.8-74.3) 0.51 (0.06) 75.2 (66.9-82.6) 76.9 (69.3-87.0) 72.4(60.9-82.1)
SA3 24Apr99 Med Early 1.0 (0, 2.0) 0.101 87.7 (86.6-88.9) 85.8 (84.5-87.1) 0.73 (0.04) 86.8(80.0-92.3) 87.6(79.3-95.1) 86.0 (77.6-94.2)
SA3 13 ]Jul 99 Med Mid 0.7 (0,1.3) 0.082 88.5(87.2-89.8) 80.8 (79.7-82.1) 0.70 (0.04) 84.9(78.7-90.7) 88.2(81.4-94.9) 80.9 (69.9-90.4)
SA3 14Aug99 Med Late 1.3 (0,2.6) 0.115 87.6 (86.1-88.8) 83.5 (82.1-85.0) 0.71 (0.03) 85.8(79.4-91.0) 87.4(78.1-95.1) 83.5(73.7-93.6)
SA3 18May02 Dry Early 1.2(0,2.3) 0.108  85.5(84.1-86.8) 81.5 (80.0-83.0) 0.67 (0.04) 84.0(76.5-89.0) 85.3(76.4-92.6) 81.5(68.6-92.3)
SA3  5]ul 02 Dry Mid 0.7 (0, 1.4) 0.084 83.9(82.5-85.5) 75.7 (74.2-77.5) 0.61 (0.04) 804 (73.6-87.1) 83.7(76.2-91.1) 75.7 (64.1-86.5)
SA3 7 Sep 02 Dry Late 0.7 (0, 1.5) 0.086 85.3 (83.7-87.0) 73.1 (71.5-74.8) 0.60 (0.06) 80.0 (73.3-86.5) 85.3(77.4-93.3) 73.3(63.5-85.3)
SA4 14Apr84 Med Early 1.2(0.1,2.3) 0.108 90.0(89.2-91.2) 90.8 (89.8-91.9) 0.81(0.04) 90.3 (84.6-95.6) 90.0(82.1-96.1) 90.8 (83.8-96.2)
SA4  19]ul 84 Med Mid 0.7 (0,1.4) 0.085 89.5(88.7-90.4) 91.1 (90.1-92.3) 0.80 (0.03) 90.3 (85.6-95.3) 89.5(82.7-95.6) 91.1(84.4-98.8)
SA4 27May88 Dry Early 0.7 (0.3,1.1) 0.083 91.8(90.8-92.7) 90.9 (89.9-91.9) 0.83 (0.03) 91.5(85.9-96.2) 91.8(85.7-97.4) 90.8 (83.1-96.9)
SA4 30]ul 88 Dry Mid 0.8 (0.1,1.5) 0.088 91.9(90.9-93.2) 88.8 (87.8-90.2) 0.81 (0.04) 90.6 (85.2-95.0) 91.9(86.1-97.8) 88.7 (80.0-95.6)
SA4 30Sep93 Wet Late 1.2 (0,2.4) 0.110  90.5 (89.4-91.7) 88.9 (87.8-89.9) 0.80 (0.03) 90.0 (83.4-95.0) 90.5(84.0-96.7) 88.8(78.8-96.9)
SA4 26May99 Med Early 0.8 (0.3,1.2) 0.087 90.8 (90.0-91.7) 93.2 (92.1-94.0) 0.84 (0.03) 91.8(86.5-95.6) 90.7 (84.7-96.7) 93.2 (86.9-97.5)
SA4 13 ]Jul 99 Med Mid 0.5(0.1,0.9) 0.073 91.2(90.3-92.1) 93.4 (92.4-94.2) 0.84 (0.03) 92.1(86.8-95.6) 91.2(85.5-96.8) 93.2(86.2-98.8)
SA4 18May02 Dry Early 0.7 (0,1.4) 0.083 91.6 (90.9-92.4) 92.5 (91.7-93.5) 0.84 (0.02) 92.1(87.4-96.2) 91.7 (85.8-98.0) 92.6 (85.0-97.5)
SA4 7 Sep 02 Dry Late 0.7 (0.1,1.4) 0.085 91.4(90.6-92.3) 93.3 (92.2-94.4) 0.85 (0.03) 92.1(87.1-95.9) 91.4(84.4-96.8) 93.3(85.6-98.1)
SA4 25Apr11 Wet Early 0.8 (0,1.5) 0.087 92.7 (91.8-93.8) 91.7 (90.7-92.5) 0.84 (0.03) 92.1(88.7-97.2) 92.7(86.5-99.3) 91.7 (85.0-98.1)
SA4 28]Jun1l Wet Mid 0.5 (0,0.9) 0.069 92.6 (91.8-93.8) 92.3 (91.5-93.6) 0.85(0.03) 92.5(87.1-98.1) 92.7 (86.0-98.0) 92.3 (84.4-98.8)
SA4 16Sep11 Wet Late 0.4 (0,0.9) 0.066 91.4 (90.2-92.3) 92.6 (91.7-93.7) 0.84 (0.03) 91.8(87.8-95.6) 91.5(86.0-98.6) 92.5(81.9-98.1)

evaluated by difference in sensitivity-specificity exemplified for
Landsat models in SA3. The vertical line marks the position of the
0.65 wetland probability threshold. Difference is sensitivity-speci-
ficity is the threshold evaluation metric recommended by Jimenez-
Valverde & Lobo (2007).
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