

#### WELCOME!

#### Four Corners and Upper Rio Grande Vulnerability Assessment Webinar Series

- ✓ Phone audio: Dial: 866-620-8138; Passcode: 5952203#
- ✓ Mute your phone and turn off computer speakers (prevents echo issue).
- $\checkmark$  Introduce yourself in the chat box.
- ✓ Webinar recordings will be posted on the Southern Rockies LCC website.





United States Department of Agriculture





## Webinar 2: Results of a Vulnerability Assessment for Elk and Mule Deer in the Four Corners and Upper Rio Grande Landscapes

Megan Friggens, Rocky Mountain Research Station Tzeidle Wasserman, Ecological Restoration Institute

# Agenda

Introduction to Four Corner and Upper Rio Grande Assessments 5 minutes Methods 15 minutes **Focal Resource Results** 30 minutes Takeaways 5 minutes Q&A 10 minutes



## Goals for This Webinar

- Provide overview of assessment results
- Identify additional datasets/needs
- Incorporate feedback from today's discussion in preparation for upcoming Adaptation Forums



The SRLCC has engaged an adaptive management framework to collaboratively develop shared conservation objectives and landscape scale adaptation strategies

- Identified Focal Resources and Landscapes
- Partnered with RMRS to create Vulnerability Assessments for Focal Resources in Two Landscape
   > Spring 2016 Adaptation Forums
   > Fall 2017 Adaptation Forums



#### Focal Resources in 2 Landscapes

- 1. Streamflow/ Native Fish/ Riparian Corridors
- 2. Mule Deer & Elk
- 3. Pinyon-Juniper Woodlands
- 4. Sage-Steppe Habitat



#### Methods

#### Framework for Landscape Level Vulnerability Assessment of Focal Resources

| VA Element           | Definition                                                                                           | Example Spatial Data/Indicators                                                                                                        |
|----------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Exposure             | External threat to the target species, system, or place                                              | <ul> <li>Human impacts</li> <li>Natural disturbances</li> <li>Climate change</li> </ul>                                                |
| Sensitivity          | Qualities that make the target<br>more susceptible to negative<br>impacts from disturbance or threat | <ul> <li>Traits/Conditions associated with increased negative response</li> <li>Indicators of potential cost of disturbance</li> </ul> |
| Adaptive<br>Capacity | The ability of the target to cope<br>with disturbance or threat                                      | <ul> <li>Traits/conditions associated with resilience</li> <li>Potential for management intervention</li> </ul>                        |

## Steps to Quantify Vulnerability

- 1. Gather data
  - Assess Relevance
  - Assign to Element
- 2. Create indices
- 3. Combine E, S, and AC indices to estimate Vulnerability



## Step 1. Gather Data

#### Criteria:

- Spatially explicit
- Available across focal landscape
- Meaningful
- Measurable uncertainty
- Tried to find datasets used and or produced by LCC stakeholders



## Challenges with combining existing data

- Resolution and scale of datasets differ and may not match management needs
- Uncertainties and assumptions of underlying datasets
- Uncertainties related to climate projections



## Step 2: Indices

#### 1 + 1 + 1 + 1 = Cumulative score

#### Pros

- Easy to interpret
- Easy to manipulate on the fly
- Are able to identify relative differences and more complicated interactions

#### Cons

- May be biased and/or misleading
- Not considering differential impacts
- Assumes equal certainty and quality of underlying data

#### From Data to Vulnerability Rank 3. Combine Scaled Impact and Adaptive Capacity Scores 2. Sum S + E 1. Score each Scores Adaptive Unit based on Vulnerability original data Capacity values Score 1 Very Low Sensitivity 2 Low Score 3 Moderate Potentia Departure T Increase=1 4 High Impact 5 Very High Exposure Density = top Score Road density 25 prcnt=1 Convert (0 1) Add <u>Data</u> <u>Overlay</u> <u>Map</u>

### Step 3. Visualize Vulnerability

| Vulnerability |   | Impact (E+S) Value |    |    |    |    |
|---------------|---|--------------------|----|----|----|----|
| ity           |   | 1                  | 2  | 3  | 4  | 5  |
| paci          | 1 | 11                 | 12 | 13 | 14 | 15 |
| Cal           | 2 | 21                 | 22 | 23 | 24 | 25 |
| ive           | 3 | 31                 | 32 | 33 | 34 | 35 |
| apt           | 4 | 41                 | 42 | 43 | 44 | 45 |
| Ad            | 5 | 51                 | 52 | 53 | 45 | 55 |

Vulnerability

|  | Lowest    |  |
|--|-----------|--|
|  | Very Low  |  |
|  | Low       |  |
|  | Moderate  |  |
|  | High      |  |
|  | Very High |  |



## Highlight Opportunities

| Oppor | tunity | Adaptive Capacity |    |    |    |    |
|-------|--------|-------------------|----|----|----|----|
|       |        | 1                 | 2  | 3  | 4  | 5  |
|       | 1      | 11                | 21 | 31 | 41 | 51 |
|       | 2      | 12                | 22 | 32 | 42 | 52 |
|       | 3      | 13                | 23 | 33 | 43 | 53 |
| pact  | 4      | 14                | 24 | 34 | 44 | 54 |
|       | 5      | 15                | 25 | 35 | 45 | 55 |

| Opportunity |              |  |
|-------------|--------------|--|
|             | Lowest       |  |
|             |              |  |
|             |              |  |
|             | Intermediate |  |
|             |              |  |
|             |              |  |
|             | Highest      |  |
|             |              |  |
|             |              |  |



#### Assessment Results

## Elk & Mule Deer: Background

- Widely distributed across focal area
- Diverse habitat types within SRLCC
- Mostly habitat generalists
- Wide range of habitats occupied (elevational gradient)
- Winter and Summer Range important
- Seasonal migration
- Sensitive to:
  - development (esp. on winter range)
  - changes in forage quality and availability
  - habitat fragmentation





## Mule Deer (Odocoileus hemionus)

- Widely distributed across West (AK to MX)
  - Diet composed mostly of shrubs Early seral habitat important Need thermal cover

#### Population fluctuations

- 1860's: Settlement of West & Livestock grazing = overgrazing, changed forage, decreased pops
- Fire and wet years produces high quality forage = pop's rebounded by 1950's
   = competition of resources & lower carrying capacity on landscape

#### Factors impacting pops:

- fire suppression = habitat changes
- Gas, oil, mineral exploration fragmented habitat
- Urbanization impacts
- Drought impacts



## Elk (Cervus elaphus)

- Forage on grasses and forbs
- Larger body size, dietary range
   =Competitive advantage
- Occupy an elevational range of habitats
- Can withstand deeper snow
- Fire suppression has changed habitat availability
- Prefer a mosaic of mid to late seral conditions interspersed with openings
- Need thermal cover



#### Data used

#### Exposure

#### Sensitivity

1. Roads

2. Urbanization/ Impervious Surface

- 3. Vegetation Cover (%)
- 4. Summer Range (area)
- 5. Winter Range (area)

#### Adaptive Capacity

- 1. Winter Precipitation
- 2. Water Availability
- 3. Vegetation & Thermal Cover

4. Pinyon-Juniper Woodlands habitat

- 1. Development & Infrastructure
- 2. Change in Development
- 3. Decrease in winter precipitation
- 4. Soil/Vegetation vulnerability (Effects of drought)

# Unit if Analysis

### Watershed HUC 12



## Relevant data not included in analysis

| Da | ita/Indicator                         | Reason                              |
|----|---------------------------------------|-------------------------------------|
| •  | Invasive species: Cheatgrass presence | Coverage incomplete/incompatible    |
| •  | Snowpack: depth &<br>timing of runoff | Not yet incorporated                |
| •  | Chronic wasting disease               | Coverage incomplete/incompatible    |
| •  | Phenology: timing, NDVI, greenness    | Exploring Climate Velocity Datasets |
| •  | Fencing                               | Coverage incomplete/incompatible    |
| •  | Riparian Vulnerability                | Not yet incorporated                |

### Data: Exposure

% affected

| Description                                                | How used      | FC   | URG  |
|------------------------------------------------------------|---------------|------|------|
| Development med-high<br>(NLCD 2011)                        | If present =1 | 37   | 34.8 |
| Change in Development<br>2040 (USGS 2014)                  | Increase =1   | 3    | 6.6  |
| Winter precip 2040<br>(Rehfeldt 2030 ensemble)             | Decrease = 1  | 81.5 | 29   |
| Soil Vulnerability/Veg<br>change<br>(Peterman et al. 2015) | Change =1     | 55.5 | 49.4 |

### Exposure Indicators: Individual data



Binary Map 0-1 for each variable UTAH SREAT SALT LAKE GREAT SALT berok ARIZONA

#### **Cumulative Exposure**

Development + Imperviousness + Winter precip + Soil Vulnerability

1 +1+0+1





### Cumulative Exposure Index



| Four Corners | Upper Rio<br>Grande |
|--------------|---------------------|
| 24 % High    | 13 % High           |
| 45 %         | 25 %                |
| Moderate     | Moderate            |
| 31 % Low     | 44 % Low            |

### Data: Sensitivity

#### % affected

| Description                             | How used                                     | FC   | URG  |
|-----------------------------------------|----------------------------------------------|------|------|
| Road Density<br>(Tiger 2016)            | >25 <sup>th</sup> percentile<br>density =1   | 63.2 | 39.2 |
| Impervious Surface<br>(NLCD 2011)       | >25 <sup>th</sup> percentile<br>threshold =1 | 32.7 | 24.1 |
| Vegetation Cover<br>(LANDFIRE EVC 2014) | Low cover (<40%) =1                          | 80.9 | 44.5 |
| Summer Range<br>(Univ. of Utah)         | Present =1                                   | 9.4  | 19.3 |
| Winter Range<br>(Univ. of Utah)         | Present=1                                    | 5.1  | 1.7  |

#### Data from University of Utah & NASA DEVELOP Project



Mule Deer Winter Range

#### **Cumulative Sensitivity**

Road density + Urbanized + Veg Cover + Summer Range + Winter Range



### Cumulative Sensitivity Index



| Four Corners    | Upper Rio<br>Grande |
|-----------------|---------------------|
| 25.8 % High     | 12.1 % High         |
| 41.7 % Moderate | 27.2 % Moderate     |
| 32.4 % Low      | 60.7 % Low          |

### Data: Adaptive Capacity

#### % available

| Description                                                  | How used                            | FC   | URG  |
|--------------------------------------------------------------|-------------------------------------|------|------|
| Winter Precip<br>(Rehfeldt 2030 ensemble)                    | Increase =1                         | 18.4 | 71.3 |
| Water Availability<br>Distance to Perennial Streams (1.5 km) | >10% area = 1                       | 43.3 | 50.4 |
| Thermal Cover<br>(>40%) (LANDFIRE EVC)                       | >60% of area = 1                    | 7.8  | 26.9 |
| Pinyon-Juniper Woodlands<br>(LANDFIRE EVT)                   | Presence (>10% w/i watershed)<br>=1 | 20.5 | 12.7 |

#### Cumulative Adaptive Capacity

Winter Precip + Water Source + Thermal Cover +PJ Woodlands



### **Cumulative Adaptive Capacity Index**





| Four Corners    | Upper Rio<br>Grande |
|-----------------|---------------------|
| 8.2 % High      | 19.7 % High         |
| 13.9 % Moderate | 33.8 % Moderate     |
| 77.9 % Low      | 46.5 % Low          |

### Estimate Vulnerability

Impact = Exposure + Sensitivity



Adaptive Capacity + Impact

| Vulnerability                 |   | Impact (E+S) Value |              |                  |                  |           |
|-------------------------------|---|--------------------|--------------|------------------|------------------|-----------|
|                               |   | 1                  | 2            | 3                | 4                | 5         |
| Adaptive<br>capacity<br>Value | 1 | Low                | Intermediate | High             | Very High        | Highest   |
|                               | 2 | Low                | Intermediate | High             | Very High        | Very High |
|                               | 3 | Very Low           | Low          | Intermedia<br>te | High             | Very High |
|                               | 4 | Very Low           | Very Low     | Intermedia<br>te | High             | High      |
|                               | 5 | Lowest             | Very Low     | Intermedia<br>te | Intermedia<br>te | High      |

## Vulnerability



## Summary

- URG had many watersheds with low vulnerability (55%)
- FC: many watersheds with moderate vulnerability (54%)
- Winter and Summer range are limiting in both FC and URG -No data on tribal lands included
- Mixture of habitat types and elevational ranges in URG
- URG: More high elevation habitat, more riparian habitat
- FC: More PJ Habitat throughout landscape
- URG: Higher Adaptive Capacity
- FC: Low Adaptive Capacity
- URG: Low Exposure (44%), Low Sensitivity (61%), twice as much Adaptive Capacity as FC, Low Vulnerability (55%)
- FC: Moderate Exposure (45%), Low Adaptive Capacity (78%), watersheds with Moderate Vulnerability (54%)



## Takeaways

#### **Creating Products to:**

- Estimate Exposure, Sensitivity, and Adaptive Capacity of Focal Resources
- Assess Vulnerability and Opportunity
- Identify critical areas of interest, importance, or priority

#### Appropriate Uses:

- Output *cannot* support local scale management decisions or conclusions
- Output *can* distinguish relative vulnerabilities across landscapes and identify or prioritize:
  - Areas for additional, fine scale study
  - High action needs (e.g. critical threats or sensitivities)
  - Common areas of interest

#### **Adaptation Forums**

Using assessments to identify management priorities

How do the results of these assessments match with where you are already working and your current priorities?

How do we use this information to move forward to develop collaborative actions and implement LCD?



"This really is an innovative approach, but I'm afraid we can't consider it. It's never been done before."

## Thank You!

#### meganfriggens@fs.fed.us

State State State

#### Tzeidle.Wasserman@nau.edu