Range-Wide Status of Rio Grande Cutthroat Trout (*Oncorhynchus clarkii virginalis*): 2016

Bryan D. Bakevich

New Mexico Department of Game and Fish

Santa Fe, New Mexico

Ryder J. Paggen

New Mexico Department of Game and Fish

Santa Fe, New Mexico

Benjamin W. Felt

Colorado Parks and Wildlife

Grand Junction, Colorado

Acknowledgements

This status assessment was developed and completed under the oversight of the Rio Grande Cutthroat Trout Conservation Team, who in addition to the primary authors, contributed substantial information and editorial oversight. Members of the team are representatives of the signatory entities to the Range-wide Conservation Agreement for Rio Grande Cutthroat Trout, including Bureau of Land Management, Colorado Parks and Wildlife, Jicarilla Apache Nation, Mescalero Apache Nation, National Park Service, New Mexico Department of Game and Fish, Coalition of Colorado Counties, Taos Pueblo, United States Fish and Wildlife Service, and the United States Forest Service.

The authors thank Matthew Zeigler for his significant work in updating the Bayesian network to include the most recent data. This document was greatly improved by the comments and suggestions made by John Alves, Harry Crocket, Yvette Paroz, Kirk Patten, Cecil Rich, Michael Ruhl, and Estevan Vigil.

Suggested Citation:

Bakevich, B.D., R.J. Paggen, and B.W. Felt. 2019. Range-wide status of Rio Grande cutthroat trout (*Oncorhynchus clarkii virginalis*): 2016. Rio Grande Cutthroat Trout Conservation Team Report. New Mexico Department of Game and Fish, Santa Fe, New Mexico.

i

Executive Summary

The Rio Grande Cutthroat Trout (RGCT) is a native sportfish that occurs in coldwater streams and lakes in the Canadian River, Pecos River, and Rio Grande basins in Colorado and New Mexico. Over the past century this subspecies has declined, primarily due to the effects of introduced trout species and habitat loss. As such, RGCT have been considered for listing under the Endangered Species Act (ESA) since 2002, but in 2014, the U.S. Fish and Wildlife Service determined that listing was not warranted. To improve the conservation status of RGCT and prevent listing under the ESA, federal, state, and tribal agencies and other organizations interested in RGCT conservation formed the RGCT Conservation Team in 2003. This document is an updated RGCT status assessment using the most recent data available from the RGCT Conservation Team to collaboratively plan and implement RGCT conservation efforts and document RGCT conservation actions from 2006 – 2016.

There were 129 RGCT conservation populations occupying 1210 kilometers range-wide in 2016. This represents a net addition of 8 conservation populations and 86 kilometers of occupied stream habitat since 2006. In addition, the area of occupied lake habitat increased by 1.29 square kilometers indicating an increase of 37 percent. This substantial improvement of the range-wide status of RGCT is a result of management actions taken by the RGCT Conservation Team, primarily through the implementation of non-native fish eradication projects.

To understand the likelihood of individual conservation populations persisting into the future, the RGCT Conservation Team requested the development of a Bayesian network model based on the most recent information. According to the model, the populations most likely to persist into the 2040's and 2080's do not contain non-native fish and are protected by fish migration barriers. Although many populations in the Rio Grande basin are predicted to persist, only six populations in the Canadian and Pecos River basins are predicted to persist long-term without management actions. The results from this model validate the effectiveness and need for continued non-native fish eradication and fish barrier construction projects.

The accomplishments of the RGCT Conservation Team from 2014 – 2017 demonstrate the substantial progress toward achieving the goals identified in the Range-wide Conservation Strategy of 2013. Many of these goals have already been met or exceeded, including the restoration of new populations, populations monitoring, constructing fish barriers, and maintaining sources of RGCT. To meet the remaining goals and continue improving the status of RGCT, future management actions will need to increase in the Rio Grande Headwaters in Colorado and the Canadian and Pecos River basins in New Mexico.

Introduction

Conservation efforts for Rio Grande Cutthroat Trout (Oncorhynchus clarkii virginalis; RGCT) across its historic distribution have been occurring for several decades through efforts by federal, state, tribal, non-governmental, and private organizations. To better understand the conservation status of RGCT and guide management actions, the RGCT Conservation Team developed the first Range-wide Status Assessment (Alves et al. 2008) based on information collected in 2006 and 2007. The purpose of this initial status assessment was to describe historic and current distribution, abundance, genetic status, and risks to RGCT range-wide. Prior to the 2008 Rangewide Assessment, other publications (i.e., Behnke 1992, Rinne 1995, Stumpff and Cooper 1996, Behnke 2002, Pritchard and Cowley 2006) had assessed the status of RGCT but were limited to only a portion of RGCT historical range, involved a limited number of experts with specific knowledge of the assessment area, or were constrained by a lack of consistency in the sources of information and criteria used. The 2008 assessment addressed these issues by incorporating data collected range-wide and using standardized data collection and storage protocols. The purpose of this document is to provide an updated status assessment using the most recent data available from the RGCT Conservation Team database to collaboratively assess, plan, and prioritize their ongoing and future RGCT conservation efforts.

The history of RGCT and its listing consideration under the Endangered Species Act of 1973, as amended (ESA) began in 2002 when U.S Fish and Wildlife Service (USFWS) determined that listing the subspecies was not warranted (Figure 1). However, in 2008 USFWS determined that listing was warranted, but precluded by higher priority actions. Most recently, in 2014, USFWS once again determined that listing RGCT under the ESA was not warranted. This decision was primarily based on the USFWS's Species Status Assessment (U.S. Fish and Wildlife Service, 2014) and the evaluation of conservation efforts being implemented by the RGCT Conservation Team and their partners.

The RGCT Conservation Team, established in 2003, is an interstate and interagency group of representatives from federal, state, and tribal agencies and other interested parties who are committed to the conservation of RGCT. This team was formed to assure the long-term viability of RGCT throughout its historic distribution and reduce the likelihood that the subspecies would require listing under the ESA. The actions and objectives of the RGCT Conservation Team are guided by a range-wide Conversation Strategy and Agreement which sets broad goals and specific conservation actions for the management and conservation of RGCT in each geographic management unit (GMU). Although the states of Colorado and New Mexico developed separate strategies and management plans in previous years, in 2013 the RGCT Conservation Team adopted and is currently working under a range-wide Conservation Strategy (RGCT Conservation Team, 2013b). Conservation Agreements among cooperating agencies and supporting organizations have been signed and updated since 2003 with the most current version

adopted in 2013 (RGCT Conservation Team, 2013a). This document demonstrates the commitment of each signatory to the actions agreed upon in the associated Conservation Strategy. The signatories to the 2013 Conservation Agreement include Bureau of Land Management (Colorado and New Mexico), Colorado Parks and Wildlife (CPW), Jicarilla Apache Nation, Mescalero Apache Nation, National Park Service (Intermountain Region), New Mexico Department of Game and Fish (NMDGF), Taos Pueblo, USFWS (Regions 2 and 6), and USDA Forest Service (Regions 2 and 3). Supporting organizations in the Conservation Agreement include Colorado Trout Unlimited, New Mexico Council of Trout Unlimited, and the Coalition of Colorado Counties.

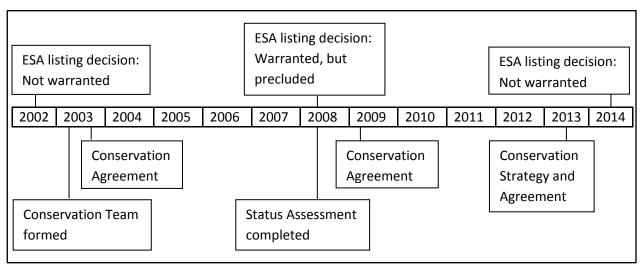


Figure 1. Timeline of ESA listing decisions and RGCT Conservation Team actions.

Range-wide Status of RGCT Conservation Populations 2016

Signatories, cooperating organizations, and other entities are continuously collecting information on the distribution and status of RGCT. Those data are consolidated, reviewed, and entered into the RGCT database annually following the Inland Cutthroat Trout Protocol (May et al. 2003; May et al. 2005; Shepard et al. 2003). This assessment is a summary and analysis of all data collected, reviewed, and entered into the database through 2016 and a comparison of the status of RGCT in 2016 to that in 2006. The reader may note that this document, published in 2019, includes data only through 2016. This is because the data collection occurred through the end of 2016, was entered into the database in 2017, and then analyzed, prepared, and reviewed for this assessment in 2018 and 2019.

Current Status and Changes in Conservation Populations 2006 – 2016

There were 129 RGCT conservation populations (genetic purity \geq 90%) occupying 1210 kilometers range-wide in 2016 (Appendix A, Figure 1, Table 1). This represents a net addition of

8 conservation populations and 86 kilometers of occupied stream habitat since 2006. Similarly, the percent of historic distribution occupied by conservation populations increased from 10.5% in 2006 to 11.3% in 2016. In addition to stream kilometers, the area of occupied lake habitat increased by 1.29 square kilometers (37%) from 2006 - 2016.

In Colorado, the number of conservation populations increased by two from 2006 - 2016, though the amount of currently occupied stream habitat decreased by 9 kilometers (1.9%). The addition of new populations improved the range-wide resiliency of RGCT to stochastic events, but the mean patch length (average length of conservation populations) and percent of historic habitat occupied slightly decreased in Colorado. Lake area occupied by conservation populations and the percent of historic distribution occupied in Colorado remained consistent from 2006 - 2016.

In New Mexico, the number of conservation populations increased by five and the amount of stream habitat currently occupied increased by 90 kilometers (12.4%) from 2006 - 2016. In addition, the percent of historic distribution occupied by conservation populations increased by 1.6%, mean patch length increased by 0.6 kilometers (7.3%), and lake area occupied increased by 1.29 square kilometers (87.8%).

The substantial improvement of the range-wide conservation status of RGCT from 2006 - 2016 is a result of management actions taken by the RGCT Conservation Team. Most of the new populations and occupied stream miles can be attributed to non-native fish eradication achieved through the use of piscicides or by ash and debris flows caused by wildfires and the subsequent stocking of RGCT. Between 2006 and 2016, two conservation populations in Colorado and three in New Mexico were lost due to the invasion and persistence of non-native salmonids, severe drought conditions, or genetic purity results demonstrating greater than 10 percent non-native genetic introgression. However, the restoration efforts that added new conservation populations and occupied stream kilometers between 2006 and 2016 considerably outnumbered these losses, resulting in net gains for the subspecies range-wide.

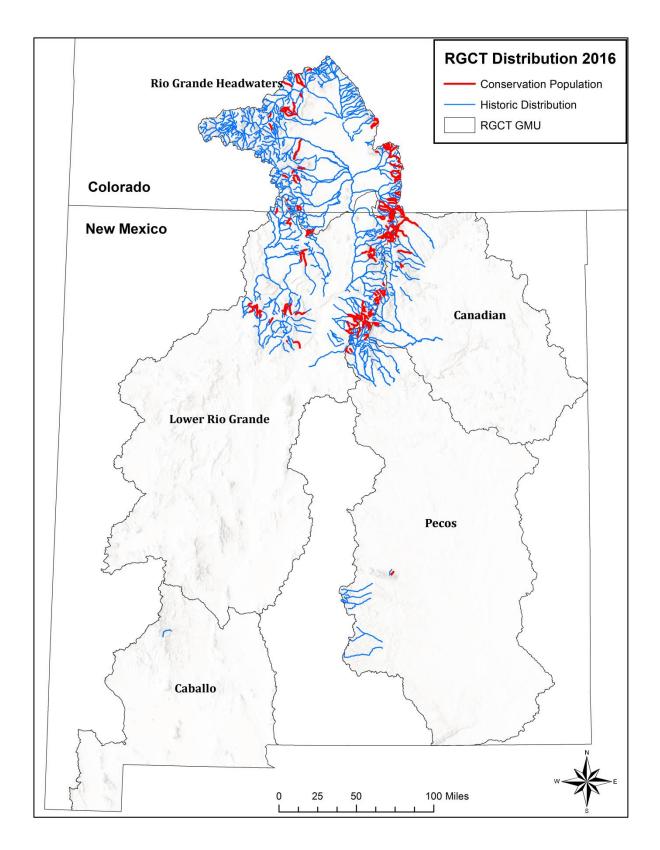


Figure 1. Current conservation populations and historic distribution of RGCT by GMU in 2016.

Table 1. Status of RGCT populations range-wide and by state in 2006 and 2016. Conservation populations crossing state lines are counted twice (6 populations in 2006 and 5 populations in 2016) but do not affect the range-wide total number of conservation populations.

	2006	2016	% Change
Range-wide			
Number of conservation populations	121	129	+ 6.2
Current distribution (km)	1124	1210	+ 7.1
Historic distribution (km)	10,718	10,720	0.0
Percent of historic distribution	10.5	11.3	+ 7.1
Mean patch length (km)	9.3	9.4	+ 1.1
Lake area occupied (km ²)	2.20	3.49	+ 37.0
Colorado			
Number of conservation populations	42	44	+ 4.5
Current distribution (km)	486	477	- 1.9
Historic distribution (km)	5,197	5,193	0.0
Percent of historic distribution	9.4	9.2	- 2.2
Mean patch length (km)	11.6	10.8	- 7.4
Lake area occupied (km ²)	2.02	2.02	0.0
New Mexico			
Number of conservation populations	84	89	+ 5.6
Current distribution (km)	638	728	+ 12.4
Historic distribution (km)	5,521	5,527	0.0
Percent of historic distribution	11.6	13.2	+ 12.1
Mean patch length (km)	7.6	8.2	+ 7.3
Lake area occupied (km ²)	0.18	1.47	+ 87.8

RGCT Conservation Populations by GMU and HUC8 Watershed 2016

In 2016, Rio Grande Cutthroat Trout conservation populations and occupied stream kilometers were the most abundant in the Lower Rio Grande GMU and Rio Grande Headwaters GMU (Table 2). The Lower Rio Grande GMU had the highest number of populations (63) and occupied stream kilometers (526.6). The Rio Grande Headwaters GMU contained 43 conservation populations occupying 464.6 kilometers of stream habitat. The Pecos GMU contained 12 populations, 11 of which were located in the Pecos Headwaters HUC8 watershed. The Canadian GMU contained 11 populations spread across three HUC8 watersheds. There were no conservation populations in the Caballo GMU, but it contained 17 kilometers of historic habitat in the Las Animas Creek watershed. Most of the historic distribution of RGCT occurred in the Rio Grande Headwaters GMU, followed by the Lower Rio Grande, Canadian, and Pecos GMUs.

Table 2. The number, currently occupied stream length, mean patch length, and occupied lake area of conservation populations and historic distribution by GMU and 8-digit HUC in 2016.

GMU, HUC8	# Pops	Current km	Mean km	Lake km ²	Historic
	-				km
Caballo					17
Caballo (13030101)					17
Canadian	11	156.4	15.4		1027
Canadian Headwaters (11080001)	3	84.3	28.1		143
Cimarron (11080002)	4	47.5	11.9		414
Upper Canadian (1108003)					23
Mora (11080004)	4	24.6	6.2		447
Lower Rio Grande	63	526.6	8.1	1.86	3404
Upper Rio Grande (13020101)	42	360.4	8.6	1.56	1524
Rio Chama (13020102)	13	98.9	7.6	0.30	1305
Rio Grande-Santa Fe (13020201)	2	12.7	6.3		124
Jemez (03020202)	3	33.5	11.2		358
Rio Puerco (13020204)	3	21.1	7.0		93
Pecos	12	62.9	4.7		1002
Pecos Headwaters (03060001)	11	59	5.4		727
Arroyo Del Macho (13060005)	1	3.9	3.9		13
Rio Hondo (13060008)					155
Rio Peñasco (13060010)					107
Rio Grande Headwaters	43	464.6	12.9	1.63	5274
Rio Grande Headwaters	1	7.2	7.2	0.96	1314
(13010001)					
Alamosa- Trinchera (13010002)	23	279.1	12.1	0.10	1518
San Luis (13010003)	1	28.8	28.8	.06	820
Saguache (13010004)	9	112.9	12.5		873
Conejos (13010005)	9	36.6	4.1	0.51	749

Mean patch length of conservation populations varied both among and within the GMUs. The Canadian GMU had the longest conservation populations averaging 15.4 kilometers in stream length. This can be attributed to the low number of populations in this GMU, but the presence of large, connected populations in the Vermejo River and Ponil Creek watersheds. The mean patch length of conservation populations in the Rio Grande Headwaters GMU was 12.9 kilometers and included the San Luis HUC8 which had the highest average patch length at the HUC8 scale. The Saguache and Alamosa-Trinchera HUC8 mean patch lengths were above the range-wide average while the Rio Grande Headwaters and Conejos HUC8s were below the range-wide average. Although the mean patch lengths of most HUC8s in the Lower Rio Grande GMU were below the range-wide average, some of the largest conservation populations occurred here. Lastly, the Pecos GMU had the shortest average patch length containing small, fragmented populations located primarily in the Pecos Headwaters HUC8.

Lakes that contained conservation populations occurred in the Lower Rio Grande and Rio Grande Headwaters GMUs. In the Lower Rio Grande GMU, most occupied lake habitat occurred in the Upper Rio Grande HUC8, all of which were located in the upper Rio Costilla watershed upstream of Costilla Reservoir. The Rio Grande Headwaters GMU contained four lakes spread among the Rio Grande Headwaters, Alamosa-Trinchera, San Luis, and Conejos HUC8 watersheds.

Genetic Status of RGCT Conservation Populations

Rio Grande Cutthroat Trout conservation populations are divided into two groups based on genetic purity: core conservation populations (genetic purity $\geq 99\%$) and conservation populations (genetic purity $\geq 90\% < 99\%$). There were 96 core conservation populations and 33 conservation populations range-wide in 2016 (Table 3) compared to 92 and 29 in 2006, respectively. The Lower Rio Grande GMU contained the highest number of core conservation populations, while the Rio Grande Headwaters contained the highest proportion relative to the less genetically pure conservation populations. The Canadian and Pecos GMUs contained the fewest core conservation populations, with the exception of the Caballo GMU which contained no RGCT populations.

Table 3. Number and occupied stream kilometers of core conservation populations (genetic purity \geq 99%) and conservation populations (genetic purity \leq 99% and \geq 90%) by GMU and 8-digit HUC in 2016.

GMU, HUC8	Core Co	ons Pops	Cons	Pops
	#Pops	Km	#Pops	Km
Caballo				
Caballo (13030101)				
Canadian	8	70.8	3	85.7
Canadian Headwaters (11080001)	2	15	1	69.3
Cimarron (11080002)	3	37.9	1	9.6
Upper Canadian (1108003)				
Mora (11080004)	3	17.9	1	6.8
Lower Rio Grande	44	381.9	19	144.6
Upper Rio Grande (13020101)	31	290.1	11	70.3
Rio Chama (13020102)	8	61.1	5	37.7
Rio Grande-Santa Fe (13020201)	2	12.7		
Jemez (13020202)	2	13.6	1	19.9
Rio Puerco (13020204)	1	4.4	2	16.7
Pecos	8	40.7	4	22.2
Pecos Headwaters (13060001)	7	36.8	4	22.2
Arroyo Del Macho (13060005)	1	3.9		
Rio Hondo (13060008)				
Rio Peñasco (13060010)				
Rio Grande Headwaters	36	364.5	7	100.3

GMU, HUC8	Core C	ons Pops	Cons Pops	
	#Pops	Km	#Pops	Km
Rio Grande Headwaters (13010001)	1	7.2		
Alamosa-Trinchera (13010002)	19	207	4	72.2
San Luis (13010003)	1	28.8		
Saguache (13010004)	6	84.9	3	28.1
Conejos (13010005)	9	36.6		
Total	06	957.0	22	252.9
Total	96	857.9	33	352.8

Population Persistence Modelling

To understand the likelihood of individual conservation populations persisting in the current time period (2010s), the short-term (2040s), and the long-term (2080s), Zeigler et al. (in review) developed a Bayesian network (BN) to model the probability of population persistence across these three time periods. This model was developed at the request of the RGCT Conservation Team as a more scientifically rigorous and predictive alternative to the previous Population Health Index (Alves et al. 2008). It not only evaluated each conservation population, but also showed what biotic and abiotic factors were the most significant contributors to population persistence and extirpation. An important assumption of the BN model is that no management actions (e.g., restoring populations, barrier construction, non-native eradication, habitat improvement) will occur over the three time periods. This approach allows managers to identify potential at-risk populations in need of active management, and conversely, which populations are predicted to persist in the absence of conservation activities.

The BN model also provides managers with information about what factors have the greatest impact on conservation populations and those that do not. A sensitivity analysis of the factors incorporated into the model indicated that threats posed by non-native fishes (e.g., non-native presence, barrier absence, proximity of non-native fishes) are the primary factors influencing population persistence (Zeigler et al. in review). Although not surprising, this result from the model provides further evidence that non-native fish eradication and barrier construction projects are the most effective actions for conserving RGCT range-wide. Conversely, environmental factors associated with climate change such as mean weekly maximum water temperature, baseflow discharge, and stream intermittency had much less effect on population persistence.

In the current time period, the model indicated that 95 of the 129 conservation populations fell between 25% and 75% probability of persistence, with 16 above 75% and 18 below 25% (Appendix B, Appendix C, Table 4). As the model projects into the future time periods, many populations move to below 25% probability of persistence. In general, these populations contain or are in close proximity to non-native fishes and lack fish migration barriers protecting them from future invasion. On the other hand, populations most likely to persist in the long-term do

not contain non-natives, sources of non-natives are far away, and are protected by a complete fish barrier. This pattern of non-native fish effects on population persistence across the three time periods is also apparent at the GMU scale.

Table 4. The number of conservation populations grouped by the percent probability of persistence range-wide and by GMU in the current (2016), short-term (2040s), and long-term (2080s) time periods.

GMU	Time Period		Number of Populations						
		0% ≤ 25%	>25% \le 50%	>50% ≤ 75%	>75%				
		Persistence	Persistence	Persistence	Persistence				
All GMUs	Current	18	51	44	16				
	Short-term	76	11	39	3				
	Long-term	80	14	31	4				
Caballo	Current								
	Short-term								
	Long-term								
Canadian	Current	1	5	3	2				
	Short-term	7	0	3	1				
	Long-term	7	1	3	0				
Lower Rio Grande	Current	10	21	22	10				
	Short-term	36	6	19	2				
	Long-term	41	3	15	4				
Pecos	Current	4	5	0	3				
	Short-term	9	0	3	0				
	Long-term	9	0	3	0				
Rio Grande	Current	3	20	19	1				
Headwaters	Short-term	24	5	14	0				
	Long-term	23	10	10	0				

The Rio Grande Headwaters and Lower Rio Grande GMUs contain a vast majority of the total RGCT populations, several of which will likely persist into the 2080s without management action. There are, however, a much larger number of populations that are at high risk to become extirpated in these GMUs without active management of threats. The Canadian and Pecos GMUs contain only 11 and 12 populations, respectively, and the BN model predicts that few of these populations are likely to persist in the long-term without management action.

The substantial population restoration and habitat work conducted by the RGCT Conservation Team since 2006 has improved the conservation status of RGCT range-wide, but the BN model strongly suggests that continued management action will be necessary to ensure that current populations will persist long-term. Large-scale non-native fish eradication projects, such as the project in the Rio Costilla watershed, will be the most effective method for addressing threats from non-native fish and creating robust RGCT metapopulations. In addition, replicating

currently threatened populations in streams not occupied by non-native fishes will further ensure the genetic diversity of the subspecies will be conserved. Although opportunities for restoration projects should be acted upon range-wide, results from the BN model suggest future conservation actions should be prioritized in the Rio Grande Headwaters GMU in Colorado and the Canadian and Pecos GMUs in New Mexico.

The BN model is the most scientifically rigorous evaluation of the status of RGCT at the population and subspecies level, but the results are very similar to those of previous analyses. Most notably, the Species Status Assessment (U.S. Fish and Wildlife Service, 2014), which preceded the "not warranted" ESA listing decision of 2014, provided similar predictions of population persistence across similar timeframes. The RGCT Population Health Index (Alves et al. 2008) differed greatly from the BN model in method, but the overall results were similar. While the BN model represents the most recent data and rigorous modelling techniques, the convergence of similar results among the BN model and other RGCT population viability models suggest that RGCT will persist in the long-term, provided that managers continue to restore new and protect current conservation populations.

RGCT Range-Wide Conservation Team Accomplishments 2008 – 2017

In 2008, the RGCT Conservation Team implemented an annual reporting protocol to summarize range-wide accomplishments towards each of the objectives outlined in the RGCT Conservation Strategy and Agreement. From 2008 – 2017, annual accomplishments were submitted by the signatories and supporting organizations and summarized in a short report to document efforts to improve the conservation status of RGCT.

Objective 1: Identify and characterize all RGCT conservation populations and occupied habitat

From 2008 - 2017, 56 surveys occurred in potentially occupied RGCT waters where RGCT were not known to occur (Table 5). This includes potential RGCT restoration waters affected by wildfire and other streams where the presence of RGCT was suspected but not confirmed. In addition, one hundred eighty-one monitoring events occurred to gather information on RGCT density, size structure, age composition, and non-native fish status. Genetic samples from 134 known or suspected RGCT populations were collected and analyzed to determine genetic purity and within-population genetic diversity. Lastly, habitat information within RGCT historic range was collected in 30 waters.

Objective 2: Secure and enhance conservation populations

Two aboriginal core conservation populations were identified and added to the range-wide database in from 2008 - 2017. Non-native fish removal efforts and fish migration barrier

construction occurred in 64 waters to secure existing conservation populations. No activities to expand connectivity within RGCT metapopulations occurred during this time period.

Objective 3: Restore populations

To eradicate non-native fish and establish new conservation populations, RGCT restoration projects occurred in 43 waters consisting of approximately 326 kilometers of stream and 2.7 km² of lake habitat. These amounts of stream length and lake area are much greater than the total restored habitat because some projects required multiple piscicide treatments of the same water to ensure successful eradication of non-native fish. A substantial portion of this work was conducted in the Rio Costilla watershed as part of a large-scale native fish restoration project consisting of 120 miles of stream, 16 mountain lakes, and a 300 acre reservoir. The restoration of Haypress Lake and its tributaries was also conducted to establish a broodstock source of RGCT for other restoration projects and recreational stocking. Approximately 200,000 RGCT were stocked into restored waters to augment pure populations in 39 waters. To improve connectivity within conservation populations, 10 events occurred including the removal or replacement of culverts that restricted RGCT movement and gene flow. Lastly, approximately 2.7 million RGCT were stocked into 213 waters to provide recreational angling opportunities outside of conservation populations. These fry, fingerling, and catchable-size RGCT were stocked into high mountain lakes, streams, and large river systems such as the Rio Grande to build awareness and provide formative experiences with native fish.

Objective 4: Secure and enhance watershed conditions

Habitat improvements and maintenance such as instream habitat improvement riparian fencing, culvert repairs or replacements, trail hardening, and changes in grazing plans occurred in 32 waters. This includes four miles of riparian fencing to benefit conservation populations on Vermejo Park Ranch in the Canadian GMU. To identify unoccupied habitats with potential for RGCT restoration, 14 waters were scouted for barriers, electrofished to determine fish presence/absence, and surveyed above a natural barrier.

Objective 5: Public Outreach

Education activities pertaining to RGCT conservation and management occurred 41 times in public and professional arenas. These activities included talks at local high schools, Native Fish and Trout in the Classroom events, Trout Unlimited Meetings, and presentations at American Fisheries Society meetings at state, regional, and national levels.

Objective 6: Data sharing

Signatories and supporting organizations submitted annual accomplishment updates that were compiled into an annual report and distributed to the RGCT Conservation Team. These accomplishments were entered into the RGCT database each year to ensure the most current information on the status of RGCT was available.

Objective 7: Coordination

The Conservation Strategy and the updated Conservation Agreement were completed and signed in 2013. In addition, the annual range-wide meetings were well attended by signatory agency representatives and included the discussion and planning of RGCT conservation actions. Representatives from signatory agencies also contributed information for the annual accomplishment reports, which were summarized and distributed to the RGCT Conservation Team.

Additional categories in the Annual Accomplishments report that capture other accomplishments not specific to any of the 7 Objectives include Category A (Miscellaneous) and Category B (Habitat). Accomplishments reported under the "Miscellaneous" category included wild and hatchery spawn operations, fish salvage in response to wildfires, and development of management plans. Accomplishments reported under the "Habitat" category consisted of fish migration barrier maintenance and construction on private property.

Table 5. Summary of annual accomplishment reports by Conservation Strategy objective and subhead 2008 - 2017.

Objective	Subhead	Events	Definition
1	Survey	56	Survey potential RGCT waters within historic range; maintain database
1	Monitor	181	Monitor RGCT populations to detect changes; maintain database
1	Taxonomy	134	Collect genetic information within historic range; maintain database
1	Habitat Inventory	30	Collect habitat information within historic range; maintain database
1	Disease	43	Conduct fish health surveys including whirling disease
2	Identify	2	Identify core conservation populations and conservation populations
2	Secure	64	Secure and enhance distribution and abundance of conservation and core conservation populations

Objective	Subhead	Events	Definition
2	Metapopulation	0	Identify, maintain, and expand connectivity within metapopulations
3	Restore	43	Increase RGCT populations by restoring RGCT habitat restoration through chemical reclamation
3	Augment	38	Augment pure populations within historic range by stocking or transplanting RGCT
3	Connectivity	10	Promote and restore connectivity of populations to enhance metapopulation function
3	Stock RGCT	213	Stock lakes and streams with RGCT for angler recreation (sum of lakes and streams stocked)
4	Improve	32	Inventory, maintain, protect, and improve existing habitat; improve fluvial/hydrological processes
4	Unoccupied	14	Identify unoccupied habitat for restoration with RGCT
5	Education	41	Subcommittee to develop education and interpretation program providing deliverables and a consistent message regarding RGCT conservation efforts
6	Database	34	Summarize distribution, population genetics and habitat data; centralize data into a database; allow range-wide integrated data analysis, summaries, and comparisons
7	Coordinate	173	Share information; identify/discuss/solve common conservation problems; prioritize issues
A	Miscellaneous	47	Accomplishments that are not listed in the other titles or strategies
В	Habitat	6	Landowner/private land habitat protection or restoration

Progress Toward 10-Year Conservation Strategy Goals

The 2013 RGCT Conservation Strategy identifies specific monitoring, population restoration, habitat improvement, and other conservation goals to be accomplished from 2014 - 2024. Information contained in the annual accomplishment reports from 2014 - 2017 were used to evaluate the RGCT Conservation Team's progress toward meeting these goals.

Conservation goals described in Objective 1, which includes population monitoring and genetic analysis, have largely been met or exceeded (Appendix D). Population monitoring goals in the Rio Grande Headwaters and Lower Rio Grande GMUs have been met and substantial work has occurred in the Pecos and Canadian GMUs. Conservation actions taken to meet this goal include standard population surveys, environmental DNA sampling, and disease testing. Repatriation of RGCT to Las Animas Creek, the only historic habitat in the Caballo GMU, began in 2017 and will be surveyed after the population becomes established. Although specific goals for genetic analysis were not identified in the Conservation Strategy, 33 populations were analyzed for genetic purity across all GMUs occupied by RGCT.

Conservation goals described in Objective 2 include the maintenance of wildlife regulations, mechanical removal (e.g., electrofishing, gill netting) of non-native fish species, fish migration barrier construction, and RGCT broodstock development. Nearly all goals for these subcategories were met from 2014 – 2017. Both CPW and NMDGF continue to have and enforce statutes restricting the introduction of non-native fish species, restricting the spread of disease and invasive species, and regulating angling. Although specific goals were not described in the Conservation Strategy, the mechanical removal of non-native fish within current conservation populations occurred in several waters. Construction of fish migration barriers occurred in the Rio Grande Headwaters and Lower Rio Grande GMUs, and planning had begun for fish barrier work in the Canadian and Pecos GMUs. To maintain genetically pure broodstocks, CPW has reestablished the Haypress Lake broodstock program and NMDGF continued to produce RGCT at Seven Springs Hatchery.

The primary conservation goal described in Objective 3 is to restore conservation populations to unoccupied waters in all GMUs. Goals for the Lower Rio Grande and Caballo GMUs have been met, though continued restoration work in these GMUs is likely to continue. Progress has been made in the Rio Grande Headwaters GMU, but four more restored populations will be needed to achieve the goal for this GMU. Similarly, at least one population will need to be restored to both the Canadian and Pecos GMUs. Projects in the Canadian, Pecos, and Rio Grande Headwaters GMUs are currently being planned and implemented to meet the goals outlined in the Conservation Strategy.

Conservation goals described in Objective 4 include restoring and monitoring current and potential RGCT habitat. Habitat restoration goals have been met in the Lower Rio Grande GMU

by the implementation of a large-scale instream habitat project on Rio Costilla and headwater meadow and wetland restoration on Comanche Creek. Although no goals were set in the Canadian GMU, approximately 3 miles of riparian fencing was built to protect and enhance RGCT habitat on Vermejo Park Ranch. Two miles of riparian fencing was completed in the Rio Grande Headwaters GMU, though more work will need to be completed here and in the Lower Rio Grande and Pecos GMUs.

Conservation goals described in Objectives 5, 6, and 7 have been met, with the exception of the Conservation Agreement renewal which expires in 2024. All of the public outreach goals have been met and exceeded through continued efforts to educate the public about RGCT conservation. Each year, several agency and other entity representatives gave presentations to students, attended youth camps, met with angler groups, and developed and distributed educational materials such as brochures and posters. GMU leaders met annually to update the range-wide dataset and ensured that database administrators were sufficiently funded. The annual range-wide meetings were well-attended by all signatories, supporting organizations, and other entities interested in RGCT conservation. Annual accomplishment reports were completed each year and a five-year Status Report was completed.

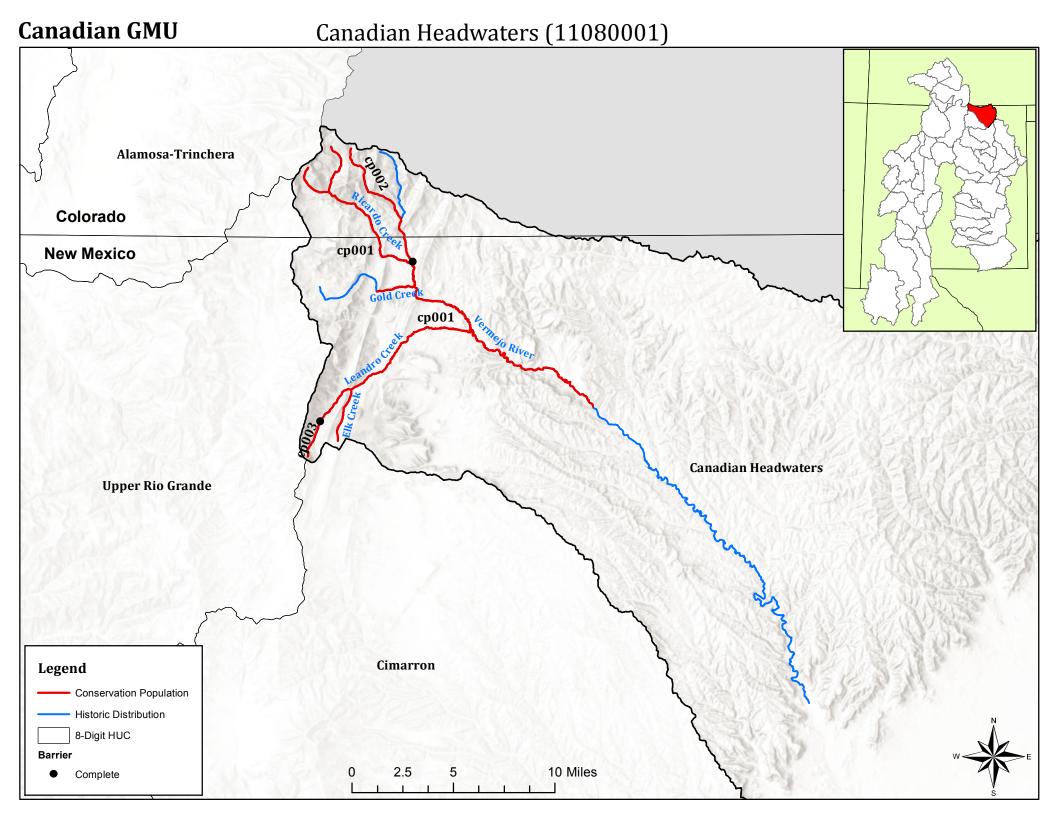
Overall, the RGCT Conservation Team is succeeding in meeting the 10-year goals described in the Conservation Strategy. In many cases, such as genetic analysis and restoration in the Lower Rio Grande GMU, efforts have exceeded these goals. Substantial work in the Rio Grande Headwaters GMU in Colorado and a shift toward conservation actions in the Canadian and Pecos GMUs in New Mexico will be necessary to meet all of the goals by 2024.

Conclusions

From 2008 – 2016, the range-wide conservation status of RGCT has improved in total number of populations and occupied stream length and lake area. Although a few populations were extirpated during this time period, management actions taken by the RGCT Conservation Team have resulted in overall net gains for the subspecies. These gains can be primarily attributed to the success of non-native fish eradication projects through use of piscicides (i.e., rotenone). Although ash and debris flows caused by catastrophic wildfire are a threat to current RGCT populations, they have eradicated non-native fish from several streams and provided additional restoration opportunities once the impacted aquatic habitats recover. These management actions by the RGCT Conservation Team played an important role in the USFWS decision not to list RGCT under the ESA in 2014.

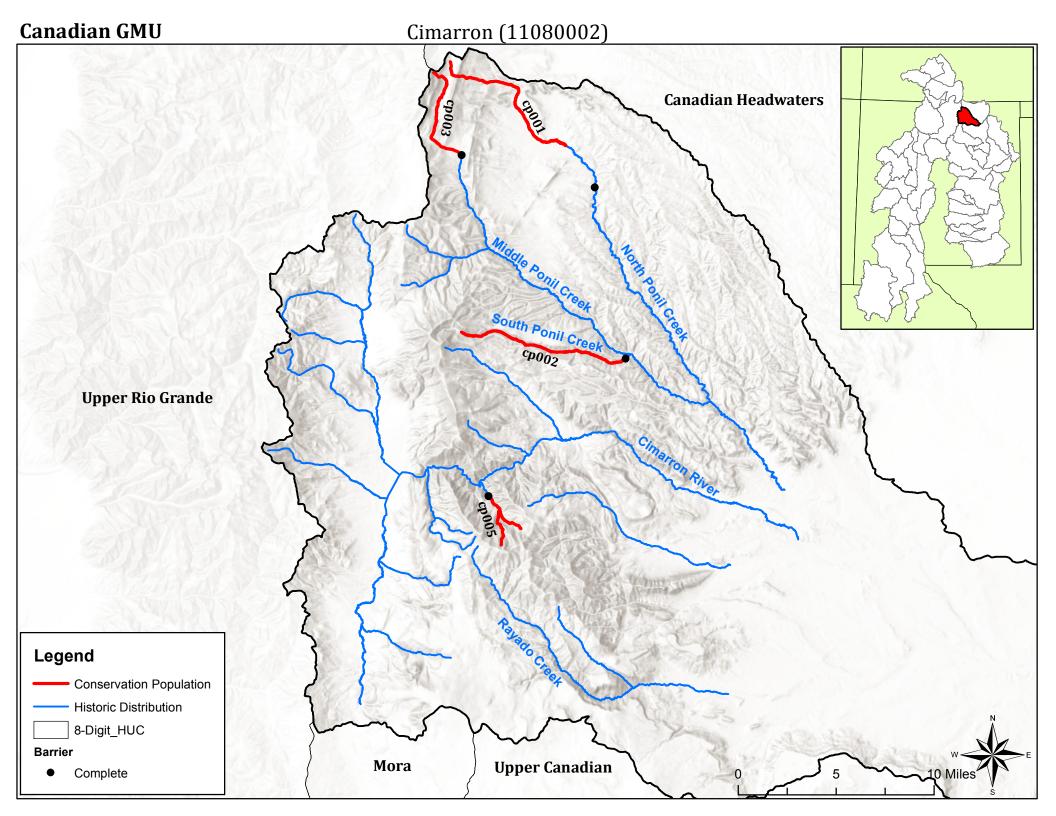
The Canadian, Pecos, and Rio Grande Headwaters GMUs should be the focus of future conservation actions. The BN model suggests that many populations in these GMUs are at risk because they lack a fish migration barrier and either contain or are in close proximity to non-

native fishes. In addition, continued RGCT restoration projects in the Rio Grande Headwaters GMU will be necessary to meet the goals set forth in the Conservation Strategy. Overall, the RGCT Conservation Team is ahead of schedule on meeting many of these goals and must now focus efforts on restoring RGCT to the Canadian, Pecos, and Rio Grande Headwaters GMUs.


The RGCT Conservation Team has accomplished significant work in conserving RGCT since it was established in 2003. However, non-native fish, drought, catastrophic wildfire, and other threats will continue to affect RGCT in the future. As such, the RGCT Conservation Team should continue to coordinate, plan, and implement RGCT restoration activities to ensure the long-term persistence of individual populations and the subspecies range-wide.

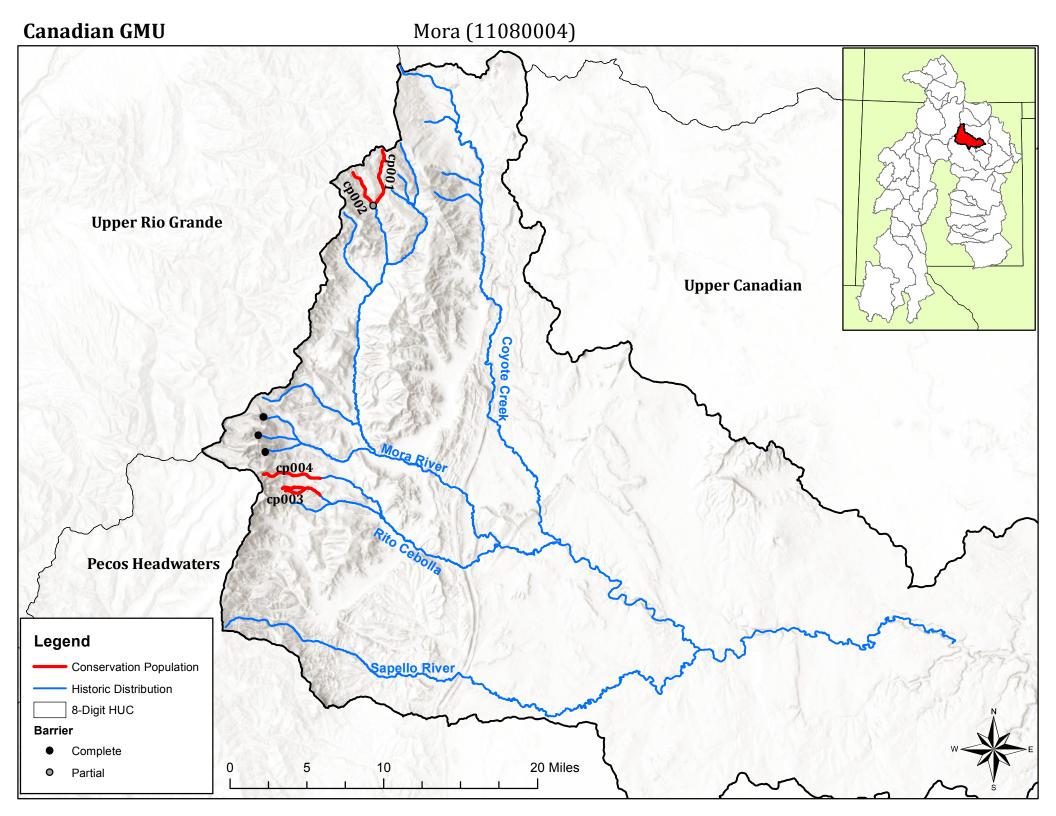
Literature Cited

- Alves, J. E., K. A. Patten, D. E. Brauch, and P. M. Jones. 2008. Range-wide status assessment of Rio Grande Cutthroat Trout (*Oncorhynchus clarkii virginalis*): 2008. Colorado Division of Wildlife, Fort Collins. Available: http://cpw.state.co.us/learn/Pages/ResearchRioGrandeCutthroatTrout.aspx (June 2018).
- Behnke, R. J. 2002. Trout and salmon of North America. The Free Press. 359 pp.
- Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6.
- May, B. E., and S. E. Albeke. 2005. Range-wide status of Bonneville cutthroat trout (*Oncorhynchus clarki utah*): 2004. Printed Agency Report. 139 pp.
- May, B. E., W. Urie and B. B. Shepard. 2003. Range-wide status of Yellowstone cutthroat trout (*Oncorhynchus clarki bouvieri*): 2001. Printed Agency Report. 200 pp.
- Pritchard, V. L., and D. E. Cowley. 2006. Rio Grande Cutthroat Trout (*Oncorhynchus clarkii virginalis*): a technical conservation assessment. New Mexico State University, Las Cruces, New Mexico.
- RGCT Conservation Team. 2013a. Rio Grande cutthroat trout (*Oncorhynchus clarkii virginalis*) Conservation Strategy. Colorado Parks and Wildlife, Denver, CO.
- RGCT Conservation Team. 2013b. Conservation Agreement for Rio Grande cutthroat trout (*Oncorhynchus clarkii virginalis*) in the states of Colorado and New Mexico. Colorado Parks and Wildlife, Denver, CO.
- Rinne, J. N. 1995. Rio Grande cutthroat trout. Young, M.K. technical editor. pages 24-27 *in* Conservation assessment for inland cutthroat trout. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, General Technical Report RM-GTR-256.
- Shepard, B. B., B. E. May, and W. Urie. 2003. Status of westslope cutthroat trout (*Oncorhynchus clarki lewisi*) in the United States. Printed Agency Report. 94 pp.
- Stumpff, W. K. and J. Cooper. 1996. Rio Grande cutthroat trout. D. A. Duff, technical editor. pages 74-86 *in* Conservation Assessment for inland cutthroat trout status and distribution. USDA Forest Service, Intermountain Region.
- U.S. Fish and Wildlife Service. 2014. Species status assessment report for the Rio Grande cutthroat trout. Albuquerque, NM.


Zeigler, M. P., K. B. Rogers, J. J. Roberts, A. S. Todd, K. D. Fausch. In review. Predicting persistence of Rio Grande Cutthroat Trout populations in an uncertain future. North American Journal of Fisheries Management.

Appendix A. Maps and population characteristics of RGCT conservation populations by HUC8 watershed in 2016.	

Canadian GMU
Canadian Headwaters 11080001


cp001 Conservat Population	Modera	tely Netw	orked	Significant Disease Risk (syn	npatric) No Ris	k of Hybridizat	tion	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Populat		<u>Habita</u> Quality		Non-natives
Ricardo Creek	11080001cd002	14.6	Aboriginal	Unaltered (< 1%)	50 to 1	50 fish/mi	Good		BRK
E. Trib. Ricardo Creek	11080001cd003	3.5	Aboriginal	Unaltered (< 1%)	50 to 1	50 fish/mi	Good	5 to 10 feet	BRK
Gold Creek	11080001cd005	3.3	Aboriginal	Not Tested - Suspected Un	altered Un	known	Good	< 5 feet	BRK
Elk Creek	11080001cd006	4.4	Aboriginal	Not Tested - Suspected Un	altered Un	known	Good	5 to 10 feet	BRK
Leandro Creek	11080001cd007	16.8	Restored	Not Tested - Suspected Un	altered Un	Unknown Good		5 to 10 feet	BRK
Little Vermejo Creek	11080001cd008	0	Aboriginal	>1% and <=10%	151 to	151 to 400 fish/mi Fair		10 to 15 feet	RBT,BRK
Ricardo Creek	11080001cd008	0.5	Aboriginal	>1% and <=10%	151 to	400 fish/mi	Fair	10 to 15 feet	RBT,BRK
Vermejo River	11080001cd008	26.3	Aboriginal	>1% and <=10%	151 to	400 fish/mi	Fair	10 to 15 feet	RBT,BRK
cp002 Core Cons Population	Ponillat	ion Isolat	ed	Limited Disease Risk	No Risk of	Hybridization		Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status P	Population Densit	y <u>Habitat Qı</u>	<u>uality</u>	Stream Width	Non-natives
Little Vermejo Creek	11080001cd001	11.9	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Excelle	nt	5 to 10 feet	BRK
cp003 Core Cons Population	Ponulat	ion Isolat	ed	Limited Disease Risk	No Risk of H	ybridization		Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status Po	opulation Density	<u>Habitat Q</u>	uality	Stream Width	Non-natives
Leandro Creek	11080001cd004	3.1	Restored	Unaltered (< 1%)	51 to 400 fish/mi	Good	1	5 to 10 feet	BRK

Canadian GMU

Cimarron 11080002

cn001	Core Conservation Population		ed Disease Risk	No Risk of Hybridiza	tion	Resident		
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
McCrystal Creek	11080002cc	1001 15.1	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	None
North Ponil Creek	11080002cd	1001 0.1	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	None
cp002 Core C Popula	Conservation ation	Population Isolat	ted Limit	ed Disease Risk	No Risk of Hybridia	zation	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
South Ponil Creek	11080002c	d002 15.2	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	None
cn003	ervation ation	Population Isol	ated Mode	erate Disease Risk < 10	km Hybridizing s	species < 10 km	Resident	
cn003		Population Isol	ated Mode		, ,	species < 10 km	Resident Stream Width	Non-natives
cp003 Popu	ation	<u>Km</u>			, ,	•		Non-natives None
Stream Name Middle Ponil Creek Core	ation <u>FishID</u>	<u>Km</u>	Origin Aboriginal	Genetic Status	Population Density	Habitat Quality Good	Stream Width	
Stream Name Middle Ponil Creek Core	ation FishID 11080002cc Conservation ation	<u>Km</u> 1003 9.6	Origin Aboriginal	Genetic Status >10% and <=20% imited Disease Risk	Population Density 151 to 400 fish/mi	Habitat Quality Good	Stream Width 5 to 10 feet	
Cp003 Popu Stream Name Middle Ponil Creek Cp005 Core Popu	ation FishID 11080002cc Conservation ation	Km 1003 9.6 Population Iso	Origin Aboriginal olated L	Genetic Status >10% and <=20% imited Disease Risk Genetic Status	Population Density 151 to 400 fish/mi No Risk of H Population Density	Habitat Quality Good Tybridization	Stream Width 5 to 10 feet Resident	None

Canadian GMU

Mora 11080004

cp001	Conservation Population	Population	Isolated N	Moderate Dise	ease Risk	x < 10 km	No Risl	of Hybridiz	ation	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic S	<u>tatus</u>	Population	Density	Habitat Qu	<u>ality</u> S	Stream Width	Non-natives
East Fork Lun	a Creek 11080004cd00	4 6.8	Aboriginal	>1% and <	=10%	Unkno	wn	Fair		5 to 10 feet	BRN
ср002	Core Conservation Population	Population	Isolated	Moderate Dis	ease Risl	k < 10 km	No Ris	sk of Hybridi	zation	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic	<u>Status</u>	Populatio	n Density	Habitat Q	<u>uality</u>	Stream Width	Non-natives
West Fork Lui	na Creek 11080004cd0	001 4.6	Restored	Unaltered	(<1%)	151 to 40	0 fish/mi	Excell	ent	5 to 10 feet	BRN
ср003	Core Conservation Population	Weakly l	Networked	Minimal D	Disease R	isk > 10 km	No I	Risk of Hybri	dization	Resident	
Stream Name	<u>Fis</u>	<u>hID</u>	<u>Km</u>	<u>Origin</u>	<u>Genet</u>	ic Status	<u>Populati</u>	on Density	<u>Habit</u> Quali		Non-natives
Headwater Tri	b. to Rito Morphy 11	080004cd005	2.6	Aboriginal	Unalter	red (< 1%)	50 to 15	50 fish/mi	Unkno	_	None
Rito Morphy	11	080004cd005	4.2	Aboriginal	Unalter	red (< 1%)	50 to 15	50 fish/mi	Unkno	wn < 5 feet	None
cp004	Core Conservation Population	Populati	ion Isolated	Minimal I	Disease R	Risk > 10 km	No I	Risk of Hybri	dization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic S	<u>Status</u>	Population	Density	Habitat Q	<u>uality</u>	Stream Width	Non-natives
Santiago Cree	k 11080004cd00	6 6.6	Aboriginal	>1% and <	=10%	50 to 150	fish/mi	Unknov	wn	< 5 feet	None

8 Miles

Rio Hondo

Complete Partial

Unknown

Lower Rio Grande GMU

Unnamed Trib. to South Fork

Glacier Creek

13020101cd069

1

Restored

Upper Rio Grande (North Half) 13020101

Core Conservat	tion	. 1.1	Y		N. D. 1 CYY 1 . 1			
cp001 Core Conservation Population	Weakly Networked		Limited	Disease Risk	No Risk of Hybridization	Reside	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	<u>Habitat</u> Quality	<u>Stream</u> Width	Non-natives
Costilla Creek	13020101cd001	1.6	Restored	Unaltered (< 1%)	> 400 fish/mi	Excellent	5 to 10 feet	None
State Line Creek	13020101cd002	1.5	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Excellent	< 5 feet	None
West Fork Costilla Creek	13020101cd007	3.2	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	< 5 feet	None
East Fork Costilla Creek	13020101cd008	4.3	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	< 5 feet	None
Unnamed Trib #1 W Fk. Costilla	13020101cd061	2.3	Aboriginal	Unaltered (< 1%)	Unknown	Good	< 5 feet	None
Creek Unnamed Trib #2 W Fk. Costilla Creek	13020101cd062	1.8	Aboriginal	Unaltered (< 1%)	Unknown	Good	< 5 feet	None
cp002 Core Conservat Population	tion Moderatel	y Network	ced Limi	ted Disease Risk	No Risk of Hybridizati	ion Resi	ident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	<u>Habitat</u> Quality	<u>Stream</u> Width	Non-natives
Costilla Creek	13020101cd005	6.2	Restored	Unaltered (< 1%)	> 400 fish/mi	Excellent	5 to 10 feet	None
Glacier Creek	13020101cd006	3.9	Restored	Unaltered (< 1%)	Unknown	Excellent	< 5 feet	None
Patten Creek	13020101cd066	0.9	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Good	< 5 feet	None
Frey Creek	13020101cd067	1.9	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Good	< 5 feet	None
South Fork Glacier Creek	13020101cd068	1.4	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Excellent	< 5 feet	None

Unaltered (< 1%)

0 to 50 fish/mi

Excellent

< 5 feet

None

cniii (re Conservation pulation	Populati	ion Isolated	Limited Disease Risk No R	Risk of Hybridization	Resident	t	
Stream Name	Stream Name <u>FishID</u>		<u>Origin</u>	Genetic Status Population Do	ensity <u>Habitat Qual</u>	lity Stream	m Width	Non-natives
PowderHouse Creek	owderHouse Creek 13020101cd003		Restored	Unaltered (< 1%) 151 to 400 fis	sh/mi Good	< .	5 feet	None
cn()()(4	p004 Conservation Population		tion Isolated	Minimal Disease Risk > 10 km	No Risk of Hybridiza	ation R	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	<u>Habitat</u>	<u>Stream</u>	Non-natives
PowderHouse Creek	13020101cd004	2.1	Aboriginal	Not Tested - Suspected Hybridized	50 to 150 fish/mi	<u>Quality</u> Good	Width < 5 feet	BRK
chillis	re Conservation pulation	Populati	on Isolated	Moderate Disease Risk < 10 km	No Risk of Hybridiz	zation	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status Population Der	<u>nsity</u> <u>Habitat Qualit</u>	ty Stream	m Width	Non-natives
La Cueva Creek 13020101cd021		5.1	Aboriginal	>1% and <=10% 50 to 150 fish/	mi Good	< :	5 feet	None
			8	,				
cniiii6	re Conservation pulation		tely Networke		o Risk of Hybridization			
cniiii6					o Risk of Hybridization Population	n Resid	lent <u>Stream</u>	Non-natives
cp006 Po	pulation	Moderat	tely Networke	ed Limited Disease Risk N	o Risk of Hybridization	n Resid	lent	
Stream Name	pulation <u>FishID</u>	Moderat	tely Networke	ed Limited Disease Risk N Genetic Status	o Risk of Hybridization Population Density	n Resid	lent Stream Width	Non-natives
Stream Name Comanche Creek	pulation FishID 13020101cd010	Moderate Km 6.4	tely Networke Origin Restored	ed Limited Disease Risk N Genetic Status Unaltered (< 1%)	o Risk of Hybridization Population Density 151 to 400 fish/mi	n Resident Habitat Quality Fair	Stream Width < 5 feet	Non-natives None
Comanche Creek Comanche Creek	pulation FishID 13020101cd010 13020101cd011	Moderate <u>Km</u> 6.4 6.9	tely Networke Origin Restored Restored	d Limited Disease Risk N Genetic Status Unaltered (< 1%) Unaltered (< 1%)	o Risk of Hybridization Population Density 151 to 400 fish/mi > 400 fish/mi	n Resident Habitat Quality Fair Fair	Stream Width < 5 feet 5 to 10 feet	Non-natives None None
Comanche Creek Comanche Creek Vidal Creek	pulation FishID 13020101cd010 13020101cd011 13020101cd012	Moderate <u>Km</u> 6.4 6.9	tely Networke Origin Restored Restored Restored	d Limited Disease Risk N Genetic Status Unaltered (< 1%) Unaltered (< 1%) Unaltered (< 1%)	o Risk of Hybridization Population Density 151 to 400 fish/mi > 400 fish/mi 50 to 150 fish/mi	n Resident Habitat Quality Fair Fair Fair	Stream Width < 5 feet 5 to 10 feet < 5 feet	Non-natives None None None
Comanche Creek Comanche Creek Vidal Creek La Belle Creek	Pulation FishID 13020101cd010 13020101cd011 13020101cd012 13020101cd013	Moderate Km 6.4 6.9 9 4.6	tely Networke Origin Restored Restored Restored Restored	d Limited Disease Risk N Genetic Status Unaltered (< 1%) Unaltered (< 1%) Unaltered (< 1%) Not Tested - Suspected Unaltered	o Risk of Hybridization Population Density 151 to 400 fish/mi > 400 fish/mi 50 to 150 fish/mi 50 to 150 fish/mi	Habitat Quality Fair Fair Fair Good	Stream Width < 5 feet 5 to 10 feet < 5 feet < 5 feet	None None None None None
Comanche Creek Comanche Creek Vidal Creek La Belle Creek Grassy Creek	Pulation FishID 13020101cd010 13020101cd011 13020101cd012 13020101cd013 13020101cd014	Moderate Km 6.4 6.9 9 4.6 5.3	Drigin Restored Restored Restored Restored Restored Restored	Condition of the condit	o Risk of Hybridization Population Density 151 to 400 fish/mi > 400 fish/mi 50 to 150 fish/mi 50 to 150 fish/mi 50 to 150 fish/mi	Habitat Quality Fair Fair Fair Good Good	Stream Width < 5 feet 5 to 10 feet < 5 feet < 5 feet < 5 feet < 5 feet	None None None None None None

ср007	Conservatio Population	n	Populat	tion Isolate	ed Signi	ficant Disease Rish	x (sympatric)	No Risk of Hybri	dization Re	esident
Stream Name	<u>FishID</u>		<u>Km</u>	Origin	Genet Genet	tic Status Popu	llation Density	Habitat Quality	Stream Wid	th <u>Non-natives</u>
Fernandez Cree	ek 130201	01cd018	4.4	Aborigin	nal >1% a	nd <=10% 50	to 150 fish/mi	Good	< 5 feet	None
ср008	Core Conser Population	rvation	Populat	tion Isolate	ed M	oderate Disease Ri	sk < 10 km	No Risk of Hybrid	lization Re	sident
Stream Name		FishID		<u>Km</u>	<u>Origin</u>	Genetic Status	Population	Density <u>Habita</u> Qualit	_	Non-natives
Unnamed Trib.	to Ute Creek	130201010	ed022	5	Aboriginal	Unaltered (< 1%)	50 to 150 f		5 to 10 feet	None
Ute Creek		130201010	ed022	8.8	Aboriginal	Unaltered (< 1%)	50 to 150 f	ish/mi Good	5 to 10 feet	None
	_									
ср009	Core Conser Population	rvation	Populat	tion Isolate	ed Mini	mal Disease Risk >	- 10 k Hybi	ridizing species > 10) km Res	dent
cp009 Stream Name		rvation <u>FishID</u>	Populat	tion Isolate	ed Mini <u>Origin</u>	mal Disease Risk > <u>Genetic Status</u>	10 k Hybi	Density <u>Habitat</u>	<u>Stream</u>	dent Non-natives
	Population		•	<u>Km</u>			Population	Density <u>Habitat</u> Quality	<u>Stream</u>	
Stream Name	Population	<u>FishID</u>	ed023	<u>Km</u> 10.3	Origin	Genetic Status	Population 0 to 50 fis	Density Habitat Quality sh/mi Poor	Stream Width	Non-natives
Stream Name Cabresto Creek Unnamed Trib.	Population	FishID 130201016 130201016	ed023	<u>Km</u> 10.3	Origin Aboriginal Aboriginal	Genetic Status Unaltered (< 1%)	Population 0 to 50 fis 0 to 50 fis	Density Habitat Quality sh/mi Poor	Stream Width 5 to 10 feet 5 to 10 feet	Non-natives BRK
Stream Name Cabresto Creek Unnamed Trib. Creek	Population to Cabresto Core Conser	FishID 130201016 130201016 rvation	ed023 ed023 Populat	10.3 3.4	Origin Aboriginal Aboriginal	Genetic Status Unaltered (< 1%) Unaltered (< 1%) mal Disease Risk >	Population 1 0 to 50 fis 0 to 50 fis	Density Habitat Quality Sh/mi Poor Sh/mi Poor bridizing species >	Stream Width 5 to 10 feet 5 to 10 feet	Non-natives BRK BRK

ср011	Core Conservation Population	Moderately Netwo		ked Limited Disease Risk N		k of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Columbine Cree	ek 13020101cd025	5	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	10 to 15 feet	BRN
Placer Fork	13020101cd025	2.1	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	10 to 15 feet	BRN
Columbine Cree	ek 13020101cd057	3.7	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	None
Placer Fork	13020101cd058	3.2	Aboriginal	Unaltered (< 1%)	Unknown	Good	< 5 feet	None
Willow Creek	13020101cd059	2.6	Aboriginal	Unaltered (< 1%)	Unknown	Good	< 5 feet	None
Deer Creek	13020101cd065	1.2	Aboriginal	Unaltered (< 1%)	0 to 50 fish/mi	Good	< 5 feet	None
cp012	cp012 Core Conservation Population		ulation Isolate	d Limited Diseas	e Risk No Risk o	of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
San Cristobal C	reek 13020101cd031	6.5	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	10 to 15 feet	None
cp013	Core Conservation Population	Po	pulation Isolat	ed Minimal Disea	se Risk > 10 km N	To Risk of Hybridiza	tion Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Yerba Creek	13020101cd027	4.7	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	BRN
cp015	Core Conservation Population	Population Isolated			ase Risk > 10 km No	Risk of Hybridization	on Reside	nt
Stream Name	FishID	Km	Origin	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Italianos Creek	13020101cd029	3.8	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	None
cp016	Core Conservation Population	Popu	lation Isolated	Minimal Disea	ase Risk > 10 km	No Risk of Hybridi	zation Res	ident
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Gavilan Creek	13020101cd030	3.4	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	5 to 10 feet	BRN

cp017 Core Conservation Population		Popul	ation Isolated	Minimal Dise	Minimal Disease Risk > 10 km		dization Res	Resident	
Stream Name	Stream Name FishID		<u>Kn</u>	<u>Origi</u>	<u>Genetic Stat</u>	us Population Der	nsity <u>Habitat Qua</u>	ality Stream Wid	th Non-natives
South Fork Ri	o Hondo	13020101cd026	6.3	Aborigi	nal Unaltered (< 1	%) 50 to 150 fish/	mi Good	10 to 15 fee	et BRN
cp041	Core Cons Population		Mode	rately Networ	ked Limited Di	sease Risk No Ris	sk of Hybridization	Resident	
Stream Name Casias Creek		SishID 3020101cd078	<u>Km</u> 4.7	Origin Restored	Genetic Status Unaltered (< 1%)	Population Density 50 to 150 fish/mi	Habitat Quality Excellent	Stream Width 5 to 10 feet	None None
Unnamed tribito Casias Cree	•	3020101cd078	0.9	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	None
Unnamed tribito Casias Cree	•	3020101cd078	1.7	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	None
cp042	Conservat Population		Popula	ation Isolated	Significant Di	sease Risk (sympatric)	No Risk of H	ybridization	Resident
Stream Name	<u>Fishl</u>	<u>ID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Chuckwagon Creek	1302	0101cd019	4.2	Aboriginal	>1% and <=10%	50 to 150 fish/mi	Good	< 5 feet	None
cp043	Core Cons Population		Popul	ation Isolated	Minimal Dis	ease Risk > 10 km	Hybridizing species	s > 10 km Resid	dent
Stream Name Allen Creek	2	FishID 13020101cd0	79 <u>K1</u>				Excellent	lity Stream Widt < 5 feet	Mon-natives None
Tributary #1 A Tributary #2 A		13020101cd0	80 1.	6 Restored	d Unaltered (< 1%	Unknown	Excellent	< 5 feet	None
cp044	Core Cons Population		Weak	ly Networked	Minimal Dise	ease Risk > 10 km	Hybridizing specie	es > 10 km Resi	dent
Stream Name	<u>FishIl</u>	<u>D</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Densit	y <u>Habitat Qualit</u>	y <u>Stream Width</u>	Non-natives
Long Canyon	13020	101cd081	4.2	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	< 5 feet	None

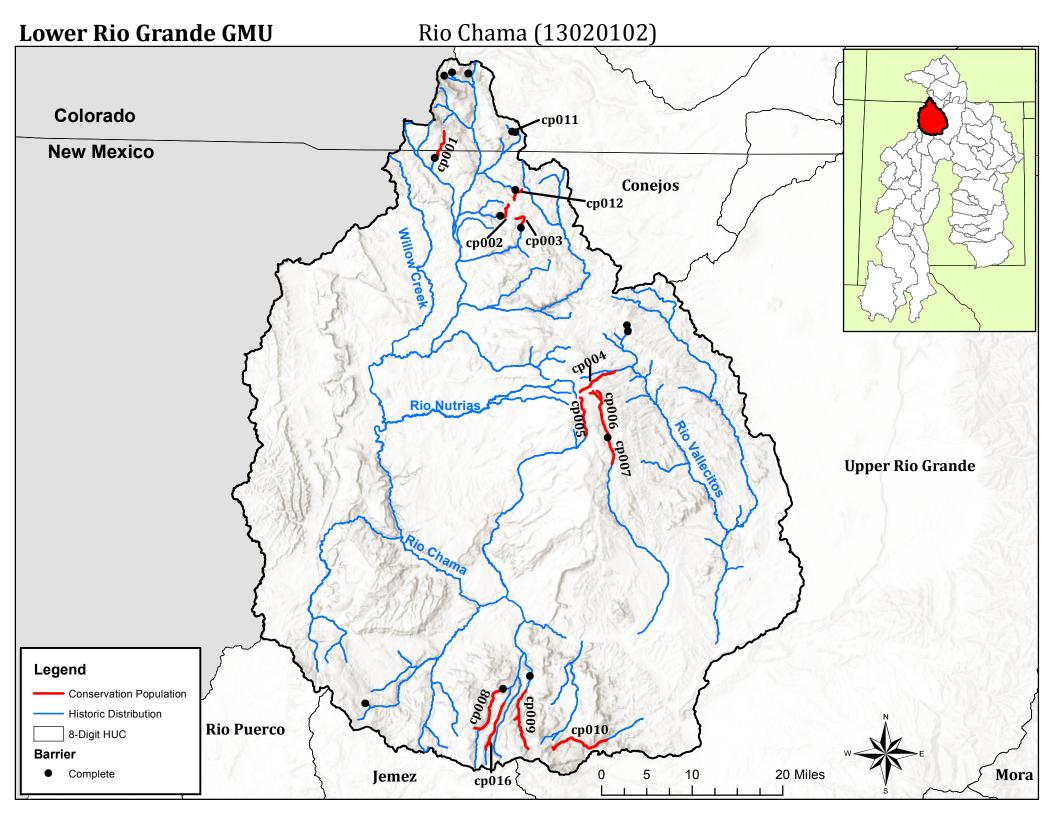
ср045	Core Conservation Population	Weal	kly Networked	Minimal Disea	Minimal Disease Risk > 10 km H		10 km Resid	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives	
Beaver Creek	13020101cd082	3.4	Restored	Unaltered (< 1%)	Unknown	Excellent	< 5 feet	None	

8 Miles

Partial

Unknown

Upper Rio Grande (South Half) 13020101

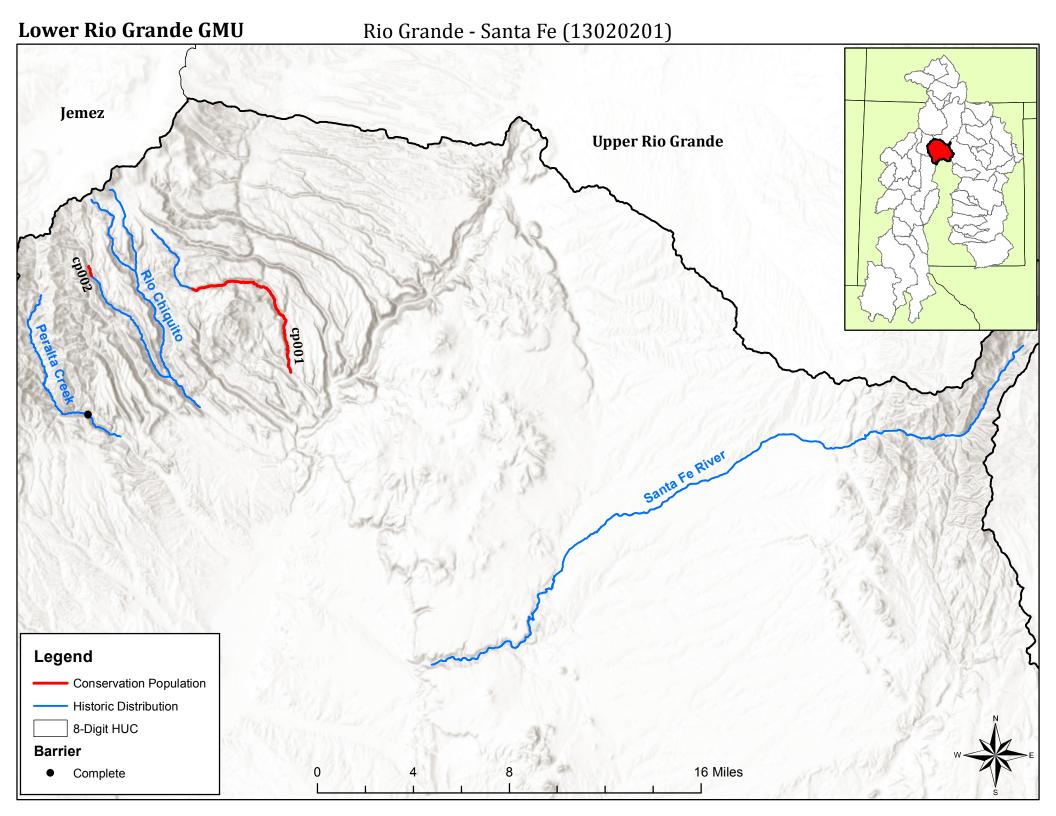

ср018	Core Conservation	Por	oulation Isolat	ed Limited Dise	ase Risk No Risk of	f Hybridization	Resident	
•	Population	Vm	Owigin	Genetic Status	Population Density	Habitat Quality	Stream Width	Non notives
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>		<u></u>			Non-natives
Tienditas Creek	13020101cd032	3.2	Aboriginal	Unaltered (< 1%)	0 to 50 fish/mi	Fair	5 to 10 feet	BRN
ср019	Core Conservation Population	Pop	ulation Isolat	ed Limited Disea	se Risk No Risk of	f Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Frijoles Creek	13020101cd033	5	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	BRN
ср020	Core Conservation Population	Pop	ulation Isolat	ed Limited Disea	se Risk No Risk of	f Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Palociento Cree	k 13020101cd034	3.9	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Excellent	5 to 10 feet	BRN
cp021	Conservation Population	Popula	tion Isolated	Minimal Disease	Risk > 10 km No	Risk of Hybridizati	on Resident	
Stream Name	<u>FishID</u>	<u>Kr</u>	<u>origin</u>	Genetic Status	Population Densit	ty Habitat Quali	ty Stream Width	Non-natives
Rio Grande del	Rancho 13020101cd0)35 4.3	Aborigina	al >1% and <=10%	6 Unknown	Good	15 to 20 feet	BRN
cp022	Core Conservation Population	Populat	on Isolated	Minimal Disease F	Risk > 10 km Hybri	dizing species > 10	km Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Densit	y <u>Habitat Qualit</u>	y Stream Width	Non-natives
Unnamed Trib. Rito la Presa	to 13020101cd036	5.8	Aborigina	l Unaltered (< 1%) Unknown	Fair	5 to 10 feet	BRN
Rito la Presa	13020101cd037	9.1	Aborigina	l Unaltered (< 1%) 151 to 400 fish/mi	Fair	10 to 15 feet	None

ср023	Core Conservation Population	Pop	ulation Isolated	l Limited Dise	ase Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Policarpio Creel	k 13020101cd038	4.8	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	None
ср024	Conservation Population	Pop	ulation Isolated	l Limited Dise	ase Risk No Risk o	f Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Osha Creek	13020101cd047	8.8	Restored >	>1% and <=10%	0 to 50 fish/mi	Good	5 to 10 feet	None
cp025	Core Conservation Population	Pop	ulation Isolated	l Limited Dise	ase Risk No Risk of	Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Rito Angostura	13020101cd040	6.4	Restored	>1% and <=10%	151 to 400 fish/mi	Good	5 to 10 feet	None
cp026	Core Conservation Population	Pop	ulation Isolated	Minimal Disea	ase Risk > 10 km H	ybridizing species >	10 km Reside	nt
Stream Name	FishID	Km	Origin	Canatia Status	Population Density	y Habitat Quality	Stream Width	N T 4.
A1 1 0 1			Origin	Genetic Status	i opulation Densit	y Habitat Quanty	Sir cain Wium	Non-natives
Alamitos Creek	13020101cd039	5.5	Aboriginal	Unaltered (< 1%		Good	10 to 15 feet	Non-natives None
Unamed N Trib to Alamitos Cre	utary 13020101cd060		' <u></u>	'-	> 400 fish/mi			·
Unamed N Trib	utary 13020101cd060	5.5 4.1	Aboriginal	Unaltered (< 1% Unaltered (< 1%	> 400 fish/mi > 400 fish/mi	Good	10 to 15 feet	None
Unamed N Trib to Alamitos Cre	utary 13020101cd060 ek Core Conservation	5.5 4.1 Pop	Aboriginal Aboriginal	Unaltered (< 1% Unaltered (< 1% Limited Dise	> 400 fish/mi > 400 fish/mi > 400 fish/mi	Good Good f Hybridization ensity Habitat	10 to 15 feet 5 to 10 feet Resident Stream	None
Unamed N Trib to Alamitos Cre cp027	core Conservation Population FishID	5.5 4.1 Pop	Aboriginal Aboriginal ulation Isolated	Unaltered (< 1% Unaltered (< 1% Limited Dise	> 400 fish/mi > 400 fish/mi > 400 fish/mi ase Risk No Risk of the control of t	Good Good f Hybridization ensity Quality	10 to 15 feet 5 to 10 feet Resident	None None

cp028	Core Conservation Population	P	opulation Isolat	ed Limited Disea	ase Risk No	o Risk of Hybridizatio	on R	esident	
Stream Name	<u>FishID</u>	Kn	<u>Origin</u>	Genetic Status	Population I	Density <u>Habitat Q</u>	uality Str	eam Width	Non-natives
East Fork Rio Santa Barbara	13020101cd041	4.1	Aboriginal	Unaltered (< 1%)	50 to 150 fi	sh/mi Good	l 10	0 to 15 feet	BRN
ср029	Core Conservation Population	P	opulation Isolat	ed Moderate Disea	ase Risk < 10 kg	m No Risk of H	lybridization	n Resid	ent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Sta	<u>atus</u>	Population	Habitat	Stream	Non-natives
West Fork Rio Santa Barbara	13020101cd043	8.7	Aboriginal	>1% and <=	:10%	Density 50 to 150 fish/mi	<u>Quality</u> Good	Width 10 to 15 feet	BRN
East Fork Rio Santa Barbara	13020101cd044	0.2	Aboriginal	Not Tested - Suspected	ed Hybridized	50 to 150 fish/mi	Good	10 to 15 feet	BRN
Middle Fork Ric Santa Barbara	13020101cd044	5.6	Aboriginal	Not Tested - Suspecto	ed Hybridized	50 to 150 fish/mi	Good	10 to 15 feet	BRN
ср030	Conservation Population	P	opulation Isolat	ed Moderate Dis	ease Risk < 10	km No Risk of I	Hybridizatio	n Resid	lent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Stat	tus	Population Density	<u>Habitat</u>	Stream	Non-natives
Rio de las Trampas	13020101cd048	8.2	Aboriginal N	Not Tested - Suspected	l Hybridized	Unknown	<u>Quality</u> Good	Width 5 to 10 feet	None
cp031	Conservation Population	P	opulation Isolat	ed Moderate Dise	ease Risk < 10 l	km No Risk of I	Hybridizatio	n Resid	lent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Stat	cus	Population Density	<u>Habitat</u> Quality	<u>Stream</u> Width	Non-natives
Rio San Leonardo	13020101cd049	5.8	Aboriginal N	Not Tested - Suspected	l Hybridized	Unknown	Good	5 to 10 feet	None

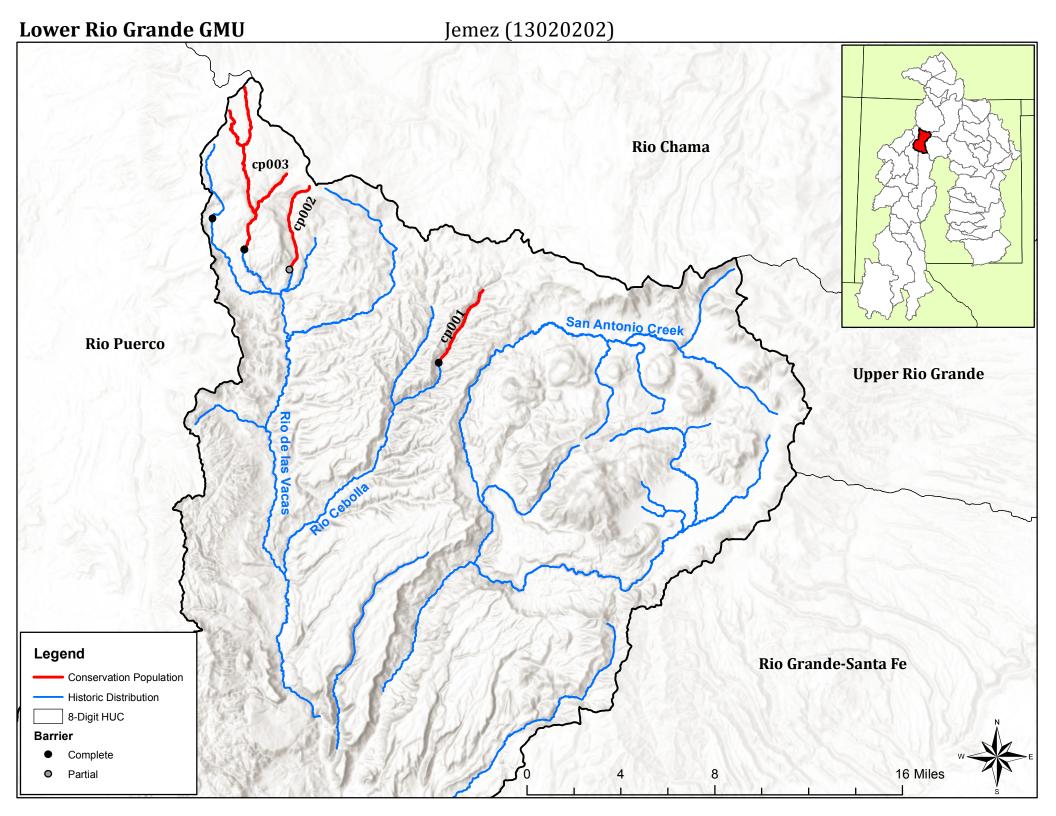
cp032	Core Conservation Population	Po	pulation Isolat	ted Moderate Dise	ease Risk < 10 kr	m N	o Risk of Hy	bridization	Resid	ent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population De	<u>ensity</u>	Habitat Qua	<u>lity</u> <u>Strea</u>	am Width	Non-natives
Rio de Truchas	13020101cd050	11.1	Aboriginal	l Unaltered (< 1%)	50 to 150 fisl	h/mi	Fair	5 to	o 10 feet	None
Rio de la Ceboll	a 13020101cd051	6.1	Aboriginal	Unaltered (< 1%)	151 to 400 fis	sh/mi	Good	5 to	o 10 feet	None
ср034	Core Conservation Population	Po	pulation Isolat	ted Limited Dise	ase Risk N	No Risk o	of Hybridizati	on I	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Sta	tus <u>I</u>	<u>Populati</u>	on Density	<u>Habitat</u>	Stream	Non-natives
South Fork Rio Quemado	13020101cd052	0.8	Aboriginal	Not Tested - Suspected	ed Unaltered	151 to 4	00 fish/mi	<u>Quality</u> Excellent	Width 5 to 10 feet	None
Unnamed Trib. South Fork Rio Quemado	13020101cd052	2.8	Aboriginal	Not Tested - Suspected	ed Unaltered	151 to 4	00 fish/mi	Excellent	5 to 10 feet	None
Rio Quemado	13020101cd053	7	Aboriginal	Not Tested - Suspecte	ed Unaltered	> 400	fish/mi	Excellent	15 to 20 fee	t None
North Fork Rio Quemado	13020101cd063	0.2	Aboriginal	Not Tested - Suspected	ed Unaltered	0 to 50) fish/mi	Excellent	5 to 10 feet	None
South Fork Rio Quemado	13020101cd064	6	Aboriginal	Unaltered (<	1%)	151 to 4	00 fish/mi	Excellent	10 to 15 fee	t None
cp035	Conservation Population	Рор	oulation Isolate	d Limited Dise.	ase Risk No	Risk of	Hybridizatior	n Re	sident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Des	nsity <u>I</u>	labitat Qual	ity Strea	m Width	Non-natives
Jicarita Creek	13020101cd045	4.1	Aboriginal	Unaltered (< 1%)	Unknown		Good	5 to	10 feet	None
ср036	Conservation Population	Pop	oulation Isolate	d Limited Disea	ase Risk No	Risk of I	Hybridization	Res	sident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Stat	tus			Habitat	Stream Width	Non-natives
Indian Creek	13020101cd046	2.8 A	Aboriginal N	Not Tested - Suspected	l Hybridized		nsity nown	Quality Good 5	Width to 10 feet	Unknown

ср037	Conservation Population		Population	Isolated	Moderate Dis	ease Risk < 10 l	km No R	isk of Hybridiz	zation Resi	dent
Stream Name	<u>FishID</u>	<u>K</u>	<u>m</u> <u>Origi</u>	<u>n</u>	Genetic S	<u>tatus</u>	Populatio Density	_	<u>Stream</u> Width	Non-natives
Rio Medio	13020101cd054	9.	.7 Aborigi	nal Not	Tested - Suspec	eted Hybridized	Unknown			RBT,BRN
Unnamed Trib. to Rio Medio	13020101cd054	3.	.4 Aborigi	nal Not	Tested - Suspec	ted Hybridized	Unknown	u Unknowi	n Unknown	RBT,BRN
cp038	Conservation Population		Population	Isolated	Moderate Dis	ease Risk < 10 l	km No R	isk of Hybridiz	zation Resi	dent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>		Genetic Statu	<u>s</u> <u>P</u>	opulation D	ensity <u>Hab</u> Qua		Non-natives
Rio Frijoles	13020101cd055	7.4	Aboriginal	Not Tes	ted - Suspected 1	Hybridized 1	151 to 400 fis			RBT,BRN
Rito Jaroso	13020101cd055	1.9	Aboriginal	Not Tes	ted - Suspected l	Hybridized 1	151 to 400 fis	sh/mi Unkn	own Unknown	RBT,BRN
Rio Frijoles	13020101cd056	3.3	Aboriginal	Not Tes	ted - Suspected 1	Hybridized	Unknowi	n Unkn	own Unknown	Unknown
ср040	Core Conservation	n	Population	Isolated	Limited Dise	ease Risk No	Risk of Hyb	oridization	Resident	
Stream Name	<u>FishID</u>	<u> </u>	<u> Orig</u>	<u>gin</u> <u>G</u>	enetic Status	Population D	ensity <u>Hal</u>	bitat Quality	Stream Width	Non-natives
Rio Molino	13020101cd077	7 5	5.6 Resto	red Un	naltered (< 1%)	151 to 400 fis	sh/mi	Excellent	5 to 10 feet	None

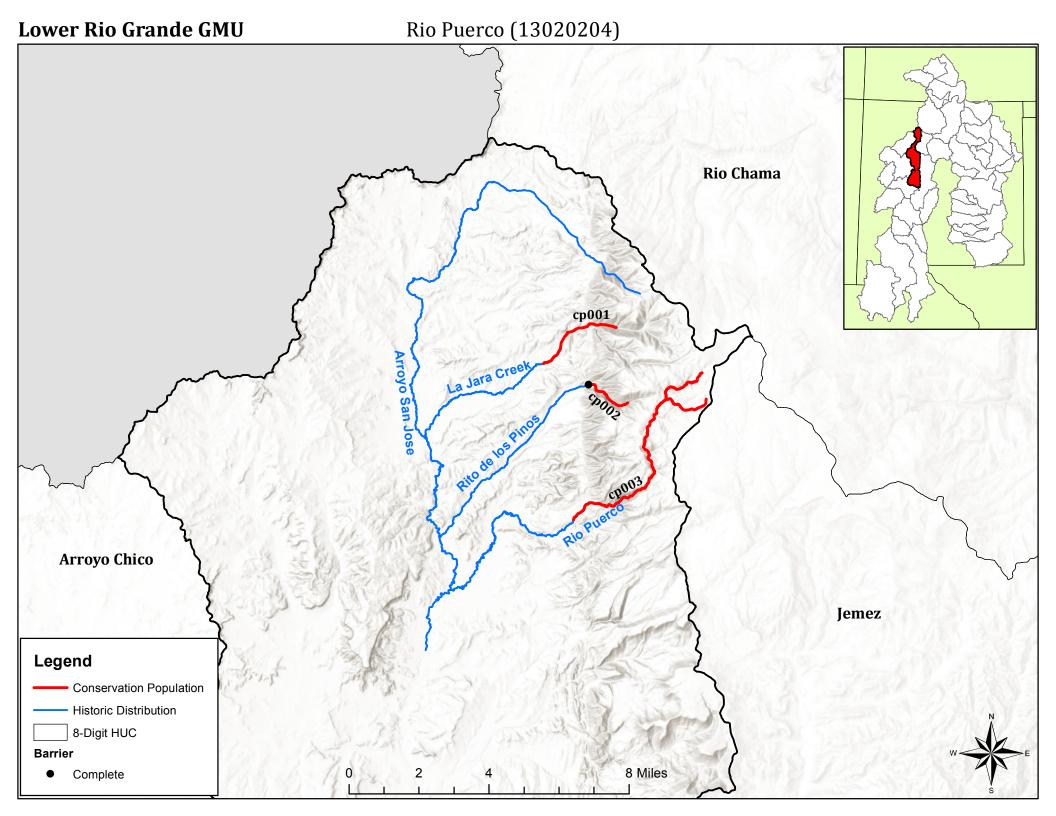


Rio Chama 13020102

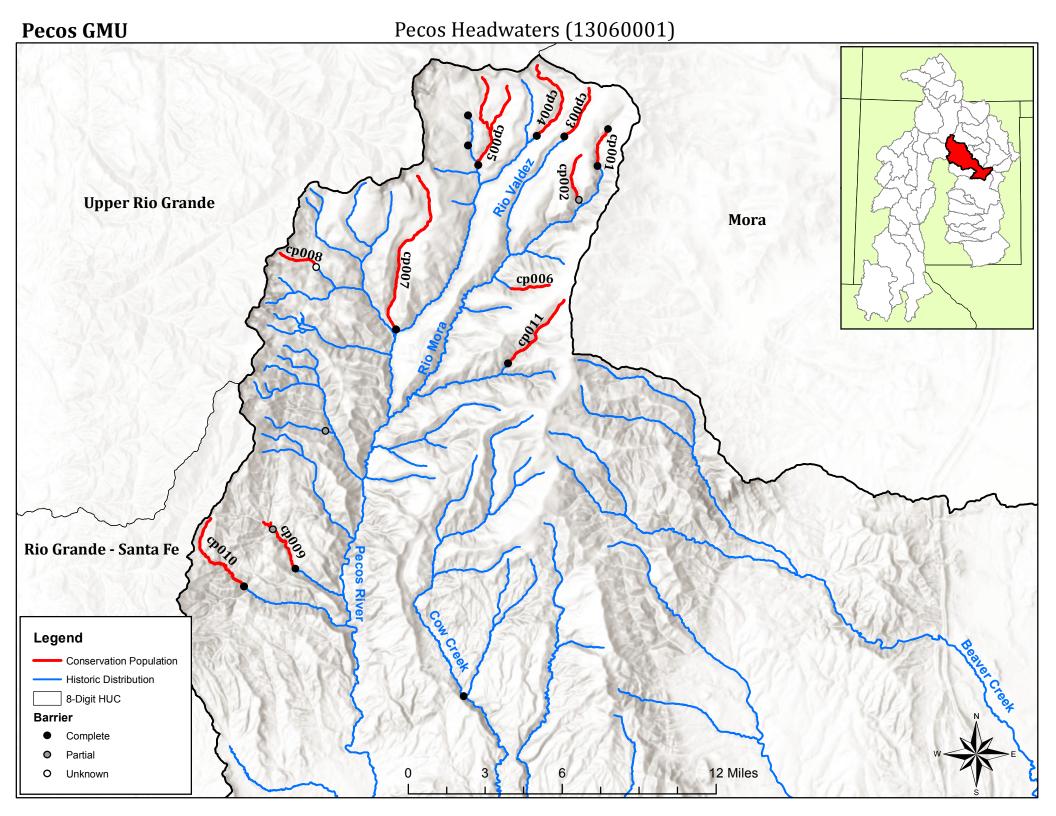
cp001	Core Conservation Population	Рорг	ılation Isola	ted Limit	ted Disease Risk	No Ri	sk of Hy	ybridization	Resident,	Lacustrine	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Sta	atus <u>Popula</u>	tion Densi	ity <u>H</u> a	abitat Quality	Stream '	Width No	n-natives
Nabor Creek	13020102cd001	5.9	Restored	Unaltered (<	1%) 151 to	400 fish/m	ni	Excellent	< 5 f	eet	None
cp002	Core Conservation Population	Po	pulation Iso	olated Sig	nificant Disease	Risk (sym	npatric)	No Risk of H	- Iybridizatio	on Re	sident
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	<u>G</u>	Senetic Status		Popula	tion Density	<u>Habitat</u>	<u>Stream</u>	Non-natives
Little Willow C	reek 13020102cd003	3.7	Restored	Not Tested	- Suspected Hyl	oridized	151 to	400 fish/mi	<u>Quality</u> Good	Width 5 to 10 feet	RBT
ср003	Conservation Population	Po	pulation Iso	olated Lin	nited Disease Ri	sk No	Risk of	Hybridization	Res	sident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	<u>(</u>	Genetic Status		Popula	ation Density	Habitat		Non-natives
Poso Creek	13020102cd004	3.9	Restored	Not Tested	d - Suspected Hy	bridized	151 to	o 400 fish/mi	Quality Excellent	Width < 5 feet	BRK
cp004	Conservation Population	Po	pulation Iso	olated Lin	nited Disease Ri	sk No	Risk of	Hybridization	Res	sident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>		Genetic Status		Popu	lation Density	<u>Habitat</u>		Non-natives
Jaroso Creek	13020102cd008	8	Aborigin	al Not Teste	ed - Suspected H	ybridized	50 t	o 150 fish/mi	Quality Good	Width < 5 feet	None
cp005	Conservation Population	Po	pulation Iso	olated Min	nimal Disease R	sk > 10 kr	m No	Risk of Hybridi	ization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origi</u>	n Geneti	<u>c Status</u> <u>Po</u> j	oulation D	<u>ensity</u>	Habitat Qua	<u>lity</u> <u>Str</u>	eam Width	Non-natives
Canjilon Creek	13020102cd009	8.1	Aborigi	nal >1% and	d <=10% 15	1 to 400 fi	sh/mi	Good	5	to 10 feet	None


on IIII6	Core Conservation Population	Popu	lation Isolate	d Limited Disea	se Risk No Risk o	f Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
El Rito	13020102cd006	10	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	10 to 15 feet	None
Unnamed Trib. # El Rito	1 to 13020102cd006	2.1	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	10 to 15 feet	None
Unnamed Trib. #2 El Rito	2 to 13020102cd006	0.6	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	10 to 15 feet	None
cn007	Conservation Population	Popu	lation Isolate	d Limited Disea	se Risk No Risk o	f Hybridization	Resident	
Stream Name	<u>FishID</u> <u>Km</u>	<u>O</u>	<u>rigin</u>	Genetic Statu	<u>s</u> <u>Populati</u>	on Density <u>Habit</u> Quali	_	Non-natives
El Rito	13020102cd007 5.3	Abo	original Not	Tested - Suspected l	Hybridized > 400	fish/mi Good		RBT
cniiix	Core Conservation Population	Popu	lation Isolate	d Limited Disea	se Risk No Risk o	f Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Canones Creek	13020102cd010	9.6	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Fair	5 to 10 feet	None
Unnamed Trib. to Canones Creek	13020102cd010	1.1	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Fair	5 to 10 feet	None
cnffff	Core Conservation Population	Popu	lation Isolate	d Limited Disea	se Risk No Risk of	f Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Polvadera Creek	13020102cd011	12.1	Aboriginal	Not Applicable	0 to 50 fish/mi	Poor	< 5 feet	None
South Fork Polva Creek	dera 13020102cd012	1	Aboriginal	Unaltered (< 1%)	Unknown	Unknown	< 5 feet	None

cp010	Conservation Population	Po	opulation Isola	nted Limited Disea	se Risk 1	No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Stat	us	<u>Populati</u>		<u>bitat</u> <u>Stream</u> ality Width	Non-natives
Rio del Oso	13020102cd013	11.2	Aboriginal	Not Tested - Suspecte	d Unaltered	0 to 50		Fair Width < 5 feet	None
Rito de Abiquiu	13020102cd013	0.6	Aboriginal	Not Tested - Suspecte	d Unaltered	0 to 50) fish/mi I	Fair < 5 feet	None
Rito del Oso	13020102cd013	0.7	Aboriginal	Not Tested - Suspecte	d Unaltered	0 to 50) fish/mi	Fair < 5 feet	None
ср011	Core Conservation Population	P	opulation Isol	ated Limited Disea	se Risk	No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	K	<u> Origi</u>	n Genetic Status	Population	on Density	<u>Habitat Quali</u>	ty Stream Width	Non-natives
Wolf Creek	13020102cd015	5 0	.6 Aborigi	inal Unaltered (< 1%)	50 to 15	50 fish/mi	Good	5 to 10 feet	BRN
ср012	Core Conservation Population	P	opulation Isol	ated Limited Disea	ise Risk	No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Kı</u>	<u>n Origin</u>	Genetic Status	Population	Density	Habitat Quality	Stream Width	Non-natives
East Fork Wolf	Creek 13020102cd01	7 1.	6 Aborigina	al Unaltered (< 1%)	> 400 fi	sh/mi	Excellent	< 5 feet	None
Headwater Trib. East Fork Wolf		0 2.	1 Aborigina	ul Unaltered (< 1%)	151 to 400) fish/mi	Excellent	< 5 feet	None
ср016	Core Conservation Population	P	opulation Isol	ated Minimal Dise	ase Risk > 10) km Hy	bridizing species	> 10 km Reside	nt
Stream Name	<u>FishID</u>	<u>K</u> 1	<u>n</u> <u>Origin</u>	Genetic Status	Population	n Density	Habitat Qualit	y Stream Width	Non-natives
Chihuahueños C	reek 13020102cd02	1 9.	3 Aborigina	al >1% and <=10%	0 to 50	fish/mi	Fair	5 to 10 feet	None
Unnamed tributa Chihuahueños C	•	1 1.	4 Aborigina	al >1% and <=10%	0 to 50	fish/mi	Fair	5 to 10 feet	None


Rio Grande – Santa Fe 13020201

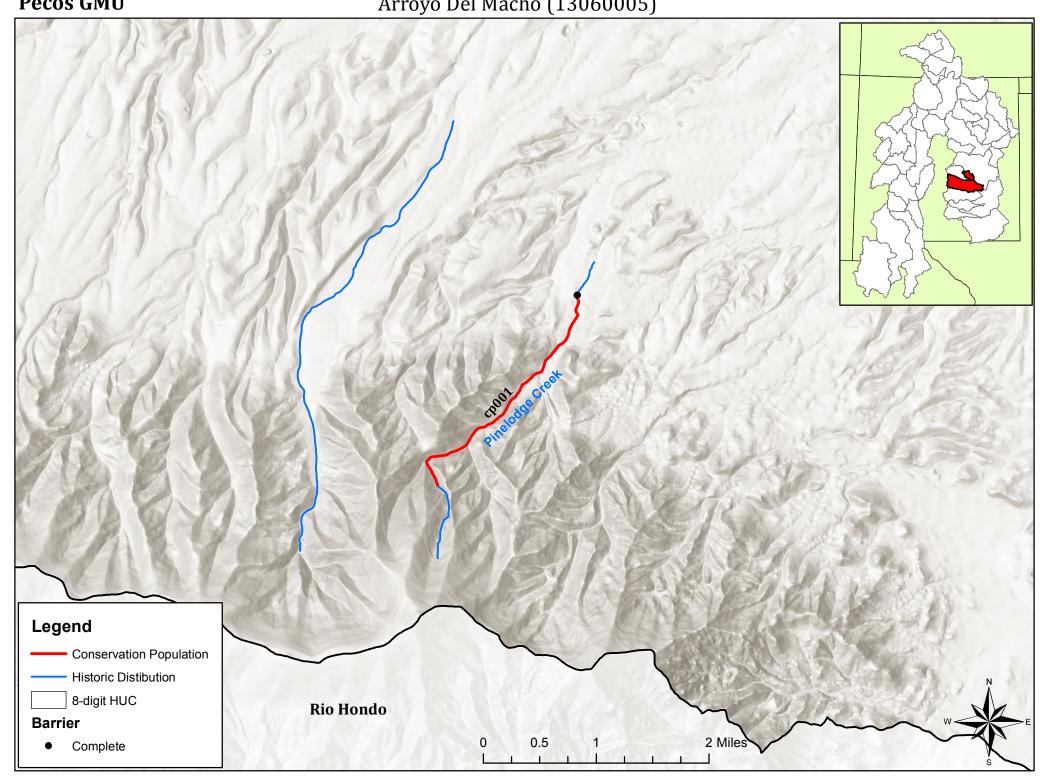
cp001	Core Conservation Population	P	opulation Isol	ated Limited Dise	Limited Disease Risk		No Risk of Hybridization		Resident	
Stream Name	<u>FishID</u>	Kr	<u>n</u> <u>Origin</u>	Genetic Status	Populatio	n Density	Habitat Qu	ality S	tream Width	Non-natives
Capulin Creek	13020201cd001	12	Restored	d Unaltered (< 1%)	0 to 50	fish/mi	Poor		5 to 10 feet	None
cp002	Core Conservation Population	P	opulation Isol	ated Limited Dise	ease Risk	No Risk o	of Hybridization	on _	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Sta	<u>tus</u>	Populat	ion Density	<u>Habitat</u>		Non-natives
Medio Dia Creel	k 13020201cd002	0.7	Aboriginal	Not Tested - Suspecte	ed Unaltered	0 to 5	60 fish/mi	Quality Fair	<u>Width</u> < 5 feet	None


Jemez 13020202

cp001	Core Conservation Population		Popula	tion Isolated	Limited Disease	e Risk	Hybridizing	species < 10	km	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Orig</u>	<u>in</u>	Genetic Status		Population 1		bitat	Stream W: 34b	Non-natives
Rio Cebolla	13020202cd001	6.7	Resto	red Not To	ested - Suspected Un	naltered	151 to 400 f		<u>iality</u> Fair	Width 5 to 10 feet	BRN
cp002	Core Conservation Population		Popula	tion Isolated	Limited Diseas	se Risk	No Risk of H	ybridization		Resident	
Stream Name	<u>FishID</u>		<u>Km</u>	<u>Origin</u>	Genetic Status	<u>Popula</u>	tion Density	Habitat Qu	ality	Stream Width	Non-natives
Rito de las Palo	mas 13020202cd00)4	6.9	Aboriginal	Unaltered (< 1%)	U	nknown	Fair		5 to 10 feet	BRN
cp003	Conservation Population	_	Weakl	y Networked	Limited Diseas	se Risk	No Risk of H	ybridization		Resident	
Stream Name	<u>FishID</u>		<u>Km</u>	<u>Origin</u>	Genetic Status	Populat	ion Density	Habitat Qua	<u>ality</u>	Stream Width	Non-natives
Rito de las Perc	has 13020202cd00)5	3.9	Restored	>1% and <=10%	> 400	0 fish/mi	Unknown	ı	< 5 feet	BRN
Rio de las Vaca	s 13020202cd00	16	8.1	Restored	>1% and <=10%	> 400	0 fish/mi	Good		5 to 10 feet	BRN
Rio de las Vaca	s 13020202cd00	7	4.5	Restored	>1% and <=10%	> 400	0 fish/mi	Fair		5 to 10 feet	None
Rito Anastacio	13020202cd00	8	3.4	Restored	>1% and <=10%	Un	known	Fair		< 5 feet	BRN

Rio Puerco 13020204

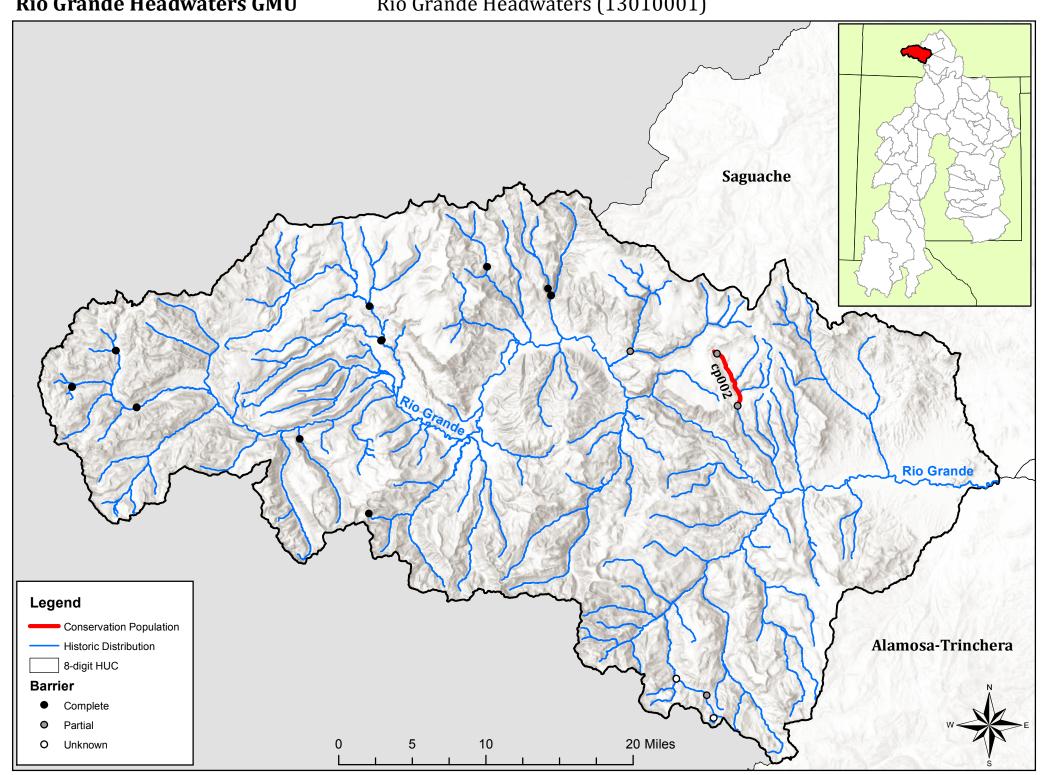
cn001	Core Conservation Population	Pop	ulation Isolated	d Limited Disea	se Risk No Risk of	Hybridization	Resident	
Stream Name	FishID	Km	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
La Jara Creek	13020204cd002	4.4	Unknown	>1% and <=10%	0 to 50 fish/mi	Good	< 5 feet	None
cn002	Conservation Population	Pop	ulation Isolated	d Limited Disea	se Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic St	atus <u>Popula</u>		abitat Stream	Non-natives
Rito de los Pinos	13020204cd001	2.3	Aboriginal	Not Tested - Suspec	ted Unaltered 50 to		Good Width < 5 feet	BRK
cn003	Conservation Population	Pop	ulation Isolated	d Limited Diseas	se Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Rio Puerco	13020204cd003	11.9	Aboriginal	>1% and <=10%	> 400 fish/mi	Fair	5 to 10 feet	None
Unnamed Trib. to Rio Puerco	13020204cd004	2.5	Aboriginal	>1% and <=10%	Unknown	Unknown	< 5 feet	None


Pecos GMU

Pecos Headwaters 13060001

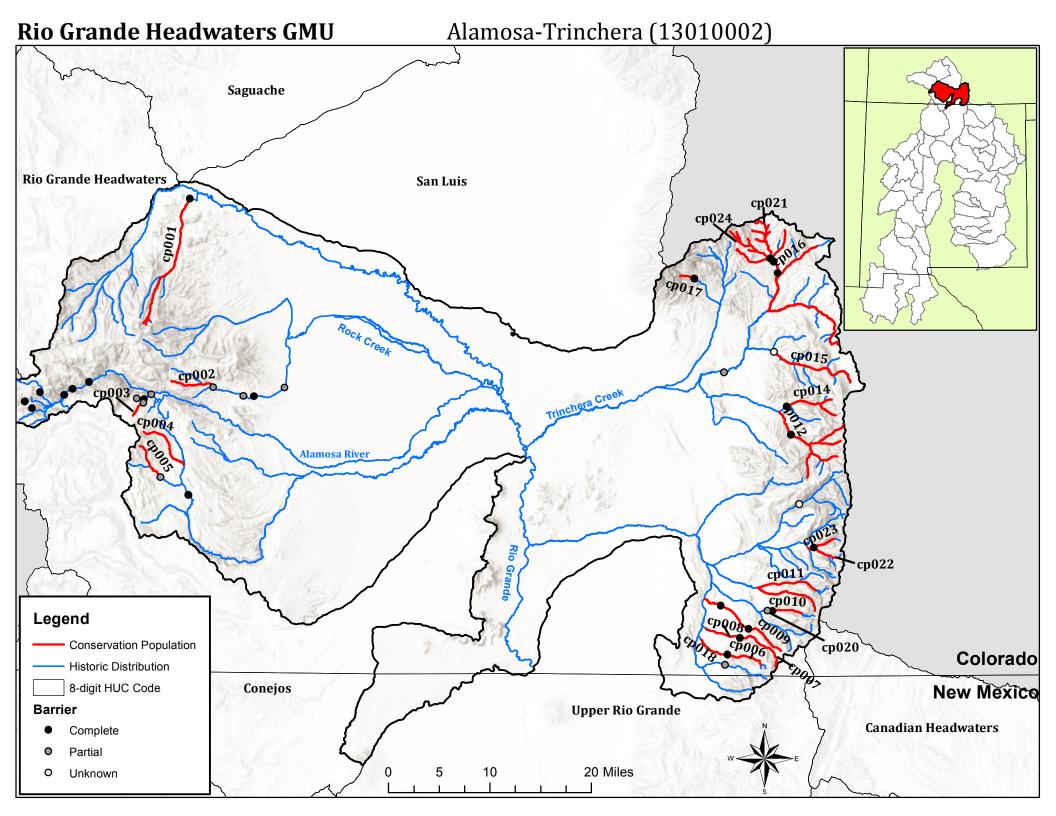
cp001	Core Conservation Population		Popu	ılation Isolat	ed	Minimal Dise	ease Risk > 10	0 km N	Jo Risk of Hybridiz	zation	Resider	nt
Stream Name	<u>FishID</u>]	<u>Km</u>	<u>Origin</u>	<u>G</u>	Genetic Status	Population	Density	Habitat Quality	Strea	am Width	Non-natives
Rio Mora	13060001cd006		2.4	Aboriginal	Ur	naltered (< 1%)	Unkno	own	Unknown	Uı	nknown	Unknown
cp002	Conservation Population		Popu	ılation Isolat	ted	Limited Dise	ase Risk	No	Risk of Hybridiza	ation	Residen	t
Stream Name	<u>FishID</u>	<u>]</u>	<u>Km</u>	<u>Origin</u>	<u>G</u>	Genetic Status	Population	Density	Habitat Quality	y <u>Str</u>	eam Width	Non-natives
Unnamed Trib. 1 Rio Mora	to 13060001cd007		3.2	Aboriginal	>1	1% and <=10%	Unkno	own	Unknown	Ţ	Jnknown	Unknown
ср003	Core Conservation Population		Popu	ılation Isolat	ted	Limited Dise	ase Risk	No	o Risk of Hybridiza	ation	Residen	t
Stream Name	<u>FishID</u>]	<u>Km</u>	<u>Origin</u>	<u>G</u>	Senetic Status	Population	Density	Habitat Quality	Stream	am Width	Non-natives
Rio Valdez	13060001cd005	:	3.7	Aboriginal	Uı	naltered (< 1%)	151 to 400) fish/mi	Good	10 1	to 15 feet	None
ср004	Conservation Population		Popu	lation Isolat	ed	Limited Dise	ase Risk	No	Risk of Hybridizat	tion	Resident	
Stream Name	<u>FishID</u>]	<u>Km</u>	<u>Origin</u>	<u>(</u>	Genetic Status	Population	n Density	Habitat Quali	ty Sti	ream Width	Non-natives
Pecos River	13060001cd003		6.3	Restored	>	1% and <=10%	151 to 40	0 fish/mi	Good	5	to 10 feet	None
ср005	Conservation Population		Popu	lation Isolat	ed	Moderate Di	sease Risk <	10 km]	No Risk of Hybrid	ization	Reside	ent
Stream Name	<u>FishID</u>	<u>Km</u>	(<u>Origin</u>		Genetic Stat	tus	Populat		<u>abitat</u>	Stream	Non-natives
Rito del Padre	13060001cd001	6.6	Ab	original		>1% and <=1	0%	151 to		<u>uality</u> iknown	Width 5 to 10 fee	t BRN
Rito Maestas	13060001cd002	3.4	Ab	original N	Not To	ested - Suspected	d Hybridized	Un	nknown Ur	ıknown	< 5 feet	Unknown

ср006	Core Conservation Population	Popula	ation Isolated	Moderate Disea	ase Risk < 10 km No	Risk of Hybridizat	ion Resider	nt
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Rito los Esteros	13060001cd008	2.5	Aboriginal	Unaltered (< 1%)	Unknown	Unknown	Unknown	BRN
cp007	Core Conservation Population	Popula	ation Isolated	Moderate Disea	ase Risk < 10 km Hy	bridizing species <	10 km Resider	nt
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Jacks Creek	13060001cd009	11.3	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	None
cp008	Conservation Population	Popula	ation Isolated	Limited Diseas	e Risk No Risk of H	Iybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Cave Creek	13060001cd010	2.7	Aboriginal	>1% and <=10%	Unknown	Fair	Unknown	Unknown
ср009	Core Conservation Population	Popula	ation Isolated	Moderate Disea	ase Risk < 10 km No	Risk of Hybridizat	ion Residen	nt
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Macho Creek	13060001cd012	0.5	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Fair	< 5 feet	None
Macho Creek	13060001cd012	3.8	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Fair	< 5 feet	None
North Fork Mac Creek	tho 13060001cd018	0.2	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Fair	< 5 feet	None
cp010	Core Conservation Population	Popula	ation Isolated	Moderate Dise	ase Risk < 10 km Hy	bridizing species <	10 km Resider	it
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Dalton Creek	13060001cd014	6.7	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	None


ср011	Core Conservation Population		pulation Isola	ted Limited Disease Risk	No Risk of Hybridization	Resident		
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	<u>Habitat</u> Quality	<u>Stream</u> Width	Non-natives
Bear Creek	13060001cd015	5.6	Aboriginal	Not Tested - Suspected Unaltered	Unknown	Excellent	5 to 10 feet	None

Pecos GMU

Arroyo Del Macho 13060005


cp001	Core Conservation Population		tion Isolated	Limited Disease	e Risk No Risk of F	No Risk of Hybridization		
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Pinelodge Creek	13060005cd001	3.9	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Good	5 to 10 feet	None

Rio Grande Headwaters GMU

Rio Grande Headwaters 13010001

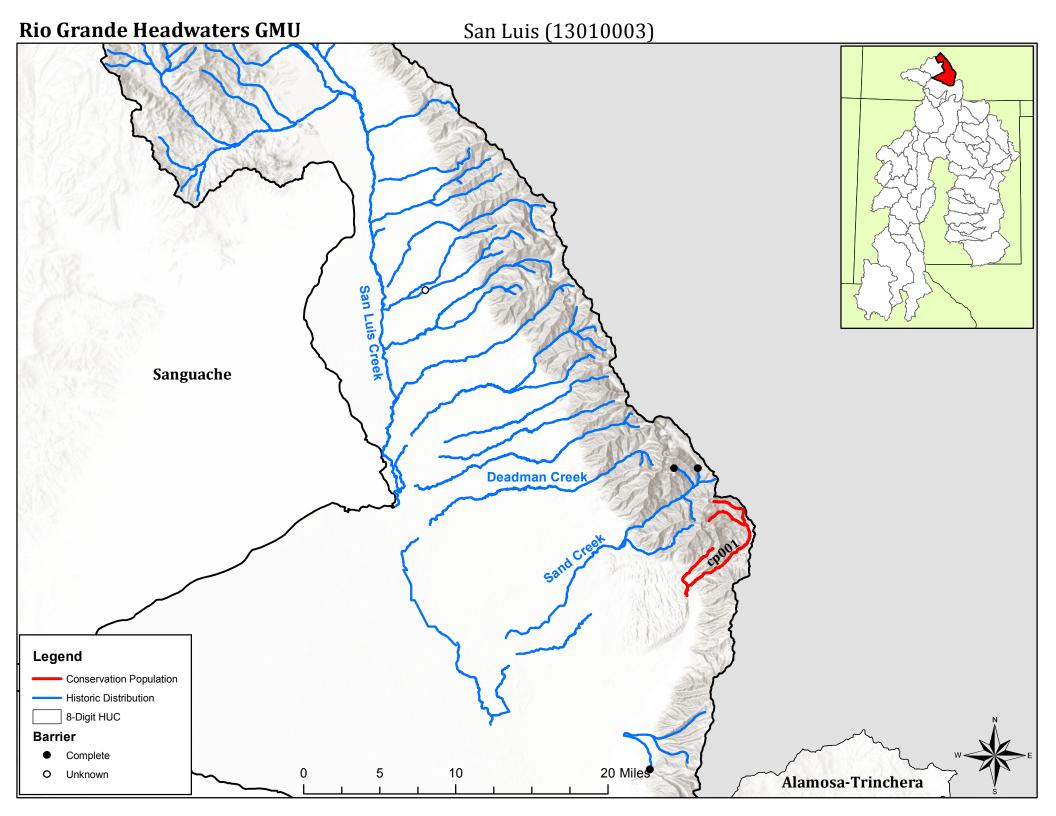
cp002 Core Conservation Population		Pop	ulation Isolate	d Limited Disea	se Risk No Risk of	Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
West Alder Creek	13010001cd001	7.2	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	BRK

Rio Grande Headwaters GMU

Alamosa - Trinchera 13010002

cp001	Core Conservation Population	Weakly	Networked	Limited Dise	Limited Disease Risk		tisk Hybridizing species < 10 km		Resident, Lacustrine	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Stat	tus Po	pulation Den		Stream W: 141	Non-natives	
East Trib to Mic San Francisco C		0.6	Restored	d Unaltered (<	1%) 5	0 to 150 fish/r	<u>Quality</u> ni Excellent	Width 5 to 10 feet	BRN	
Middle Fork Sar Francisco Creek		8.4	Restored	d Unaltered (<	1%) 5	0 to 150 fish/r	mi Excellent	5 to 10 feet	BRN	
San Francisco C	reek 13010002cd005	15	Restored	d Unaltered (<	1%) 5	0 to 150 fish/r	ni Excellent	5 to 10 feet	BRN	
West Trib to Mi San Francisco C		1.3	Restored	d Unaltered (<	1%) 5	0 to 150 fish/r	ni Excellent	5 to 10 feet	BRN	
cp002	Core Conservation Population	Populat	ion Isolated	Limited Dise	ease Risk	No Risk of	Hybridization	Resident		
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Populat	tion Density	Habitat Quality	Stream Width	Non-natives	
Cat Creek	13010002cd003	2.3	Restored	Unaltered (< 1%)	151 to	400 fish/mi	Fair	< 5 feet	None	
South Fork Cat Creek	13010002cd036	5.4	Restored	Unaltered (< 1%)	0 to 5	50 fish/mi	Fair	< 5 feet	None	
cp003	Conservation Population	Populat	ion Isolated	Limited Dise			Hybridization	Resident		
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Popula	tion Density	Habitat Quality	Stream Width	Non-natives	
Rhodes Gulch	13010002cd004	3.5	Restored	>1% and <=10%	151 to	400 fish/mi	Fair	< 5 feet	None	

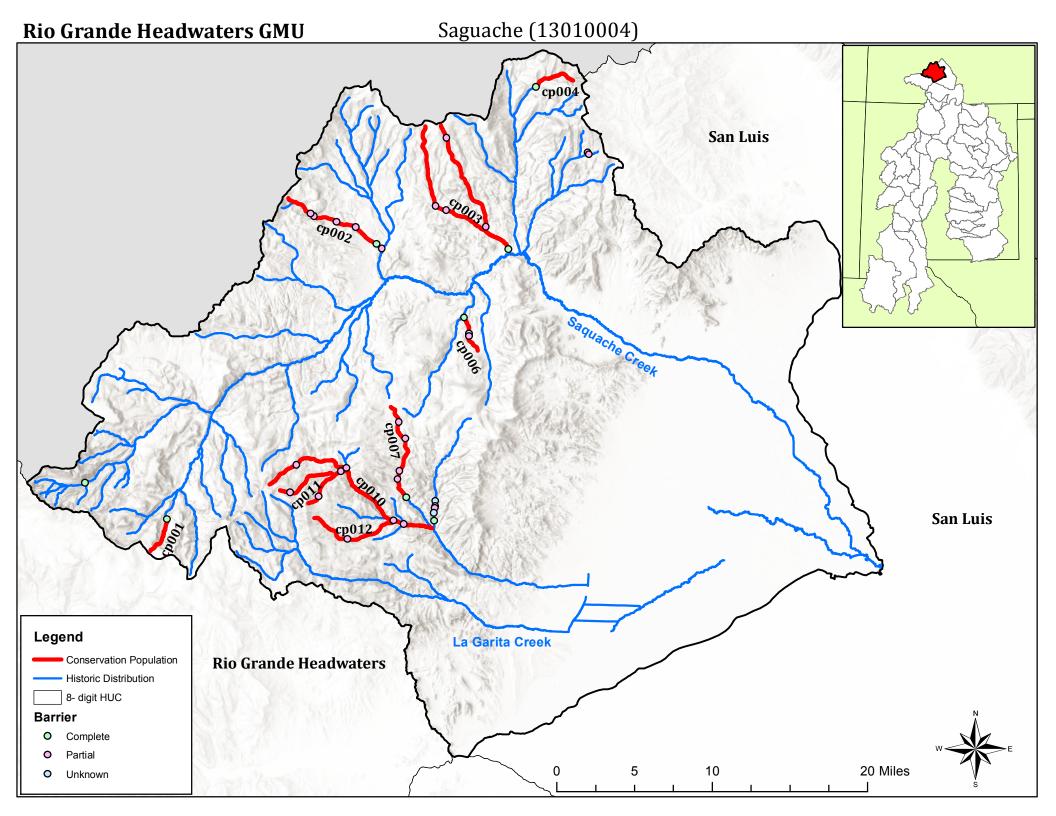
cp004	Core Conservation Population	Po	pulation Isolated	l Limited Dise	ease Risk No Ris	sk of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	<u>Popu</u>	lation Density	<u>Habitat</u> <u>Stream</u> Quality Width	Non-natives
Torsido Creek	13010002cd002	10.4	Restored No	ot Tested - Suspected U	Jnaltered 0 t	o 50 fish/mi	Poor < 5 feet	BRK
cp005	Core Conservation Population	Po	pulation Isolated	l Limited Dise	ease Risk No Ris	sk of Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Densi	t <u>y</u> Habitat Quali	ty Stream Width	Non-natives
Jim Creek	13010002cd001	6.7	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Poor	5 to 10 feet	BRK
cp006	Core Conservation Population	Po	pulation Isolated	l Limited Dise	ease Risk No Ris	sk of Hybridization	Resident	
Stream Name	<u>FishID</u>	Km	<u>Origin</u>	Genetic Status	Population Den	sity Habitat Qua	ality Stream Widtl	Non-natives
Cuates Creek	13010002cd013	6.1	Aboriginal	Unaltered (< 1%)	151 to 400 fish/	mi Excellen	t 5 to 10 feet	None
cp007	Core Conservation Population	Ро	pulation Isolated	l Limited Dise	ease Risk No Ris	sk of Hybridization	Resident	
Stream Name	<u>FishID</u>	Km	<u>Origin</u>	Genetic Status	Population Den	<u>sity</u> <u>Habitat Qua</u>	ality <u>Stream Widtl</u>	Non-natives
Jaroso Creek	13010002cd015	9.3	Aboriginal	Unaltered (< 1%)	50 to 150 fish/1	mi Good	5 to 10 feet	BRK
cp008	Core Conservation Population	Ро	pulation Isolated	l Limited Dise	ease Risk No Ris	sk of Hybridization	Resident	
			~	C4° - C4-4	D 1 - 4' D	aite. Habitat O.	114 C4 VV: J41	NT 4*
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Den	sity Habitat Qua	ality Stream Width	Non-natives


ср009	Core Conservation Population	Pop	oulation Isolated	Limited Dise	ease Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Torcido Creek	13010002cd01	7 6.9	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	< 5 feet	None
Torcido Creek	13010002cd05	1 0.6	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	< 5 feet	None
Torcido Creek	13010002cd05	1 5.7	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	< 5 feet	None
ср010	Core Conservation Population	Pop	oulation Isolated	Limited Dise	ase Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Alamosito Cree	k 13010002cd01	0 4.9	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	BRN
cp011	Conservation Population	Pop	oulation Isolated	Limited Dise	ase Risk No Risk of	- Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	<u>Population</u>	on Density Habi		Non-natives
Vallejos Creek	13010002cd011	11.9 A	boriginal	Unaltered (< 1%) 50 to 15	0 fish/mi Goo		BRN
North Vallejos Creek	13010002cd012	10.7 A	boriginal Not	Tested - Suspected U	Unaltered 0 to 50	fish/mi Excell	ent 5 to 10 feet	BRN
cp012	Core Conservation Population	ı Pop	oulation Isolated	Limited Dise	ase Risk No Risk of	Hybridization	Resident	
Stream Name	FishID	Km	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Deep Canyon	13010002cd	014 4.3	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Good	< 5 feet	BRK
South Fork Trin Creek	chera 13010002cd	018 13	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Excellent	10 to 15 feet	BRK
Trinchera Creek	13010002cd	018 1.5	Restored	Unaltered (< 1%)	0 to 50 fish/mi	Excellent	10 to 15 feet	BRK
Tributary #1 So Fork Trinchera		049 6.7	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	< 5 feet	BRK
Tributary #2 So Fork Trinchera		050 3.7	Aboriginal	Unaltered (< 1%)	0 to 50 fish/mi	Good	< 5 feet	BRK

chill/i	Core Conservation Population	Poj	oulation Isola	nted Limit	ed Disease Risk	No Risk	of Hybridization	n Res	sident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	<u>Geneti</u>	c Status	Popul	ation Density	<u>Habitat</u>	Stream	Non-natives
North Fork Trinchera Creek	13010002cd020	8.1	Restored	Not Tested - Sus	spected Unaltered	0 to	50 fish/mi	Quality Excellent	Width 5 to 10 feet	BRK
Trib #1 to North I Trinchera Creek	Fk 13010002cd032	2 3.4	Restored	Unaltere	ed (< 1%)	J	Jnknown	Good	5 to 10 feet	BRK
cn(1)15	Core Conservation Population	Po	pulation Isol	ated Limited	Disease Risk No	o Risk of	Hybridization	Resid	ent	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	s Population D	<u>Density</u>	Habitat Qualit	<u>y</u> Stream	Width N	<u>on-natives</u>
West Indian Creek	k 13010002cd021	10.4	Aboriginal	Unaltered (< 1%	6) 50 to 150 fis	sh/mi	Excellent	5 to 10	0 feet	BRK
South Fork West Indian Creek	13010002cd037	6.7	Aboriginal	Unaltered (< 1%	6) 151 to 400 fi	ish/mi	Excellent	5 to 10	0 feet	BRK
cn016	Core Conservation Population	W	eakly Netwo	rked Significa	ant Disease Risk (s	sympatric	c) Unknown	R	esident	
Stream Name	FishID 1	<u>Km</u> <u>(</u>	<u>Origin</u>	Genetic Status	Population Dens	<u>ity</u> <u>Ha</u>	bitat Quality	Stream Wi	dth <u>No</u>	<u>ı-natives</u>
Wagon Creek	13010002cd022 2	0.5 Al	ooriginal U	Inaltered (< 1%)	151 to 400 fish/n	ni	Good	5 to 10 fee	et BRK,	Other Trout
Placer Creek	13010002cd024	1.4 Al	original U	Inaltered (< 1%)	> 400 fish/mi		Fair	5 to 10 fee	et	BRK
Sangre de Cristo Creek	13010002cd024	16 Al	ooriginal U	Jnaltered (< 1%)	> 400 fish/mi		Fair	5 to 10 fee	et	BRK
cnii i'/	Core Conservation Population	Po	pulation Isol	ated Limited	Disease Risk No	o Risk of	Hybridization	Resid	ent	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population De	ensity	Habitat Quality	Stream V	Width No	<u>n-natives</u>
Little Ute Creek	13010002cd028	2.1	Restored	Unaltered (< 1%)	151 to 400 fis	sh/mi	Excellent	5 to 10	feet	None
Unnamed Trib. to Little Ute Creek	13010002cd028	0.6	Restored	Unaltered (< 1%)	151 to 400 fis	sh/mi	Excellent	5 to 10	feet	None

ср018	Core Conservation Population	Poj	pulation Isola	ted Moderate Di	sease Risk < 10 km	No Risk of Hybridization Resident		
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Cuates Creek	13010002cd008	5.5	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Fair	< 5 feet	None
ср019	Core Conservation Population	Poj	pulation Isola	ted Limited Dise	ease Risk No Ris	k of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Torcido Creek	13010002cd033	3.3	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Good	5 to 10 feet	None
ср020	Core Conservation Population	Poj	pulation Isola	ted Limited Dise	ease Risk No Ris	k of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Alamosito Creel	k 13010002cd046	0.8	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	5 to 10 feet	BRN

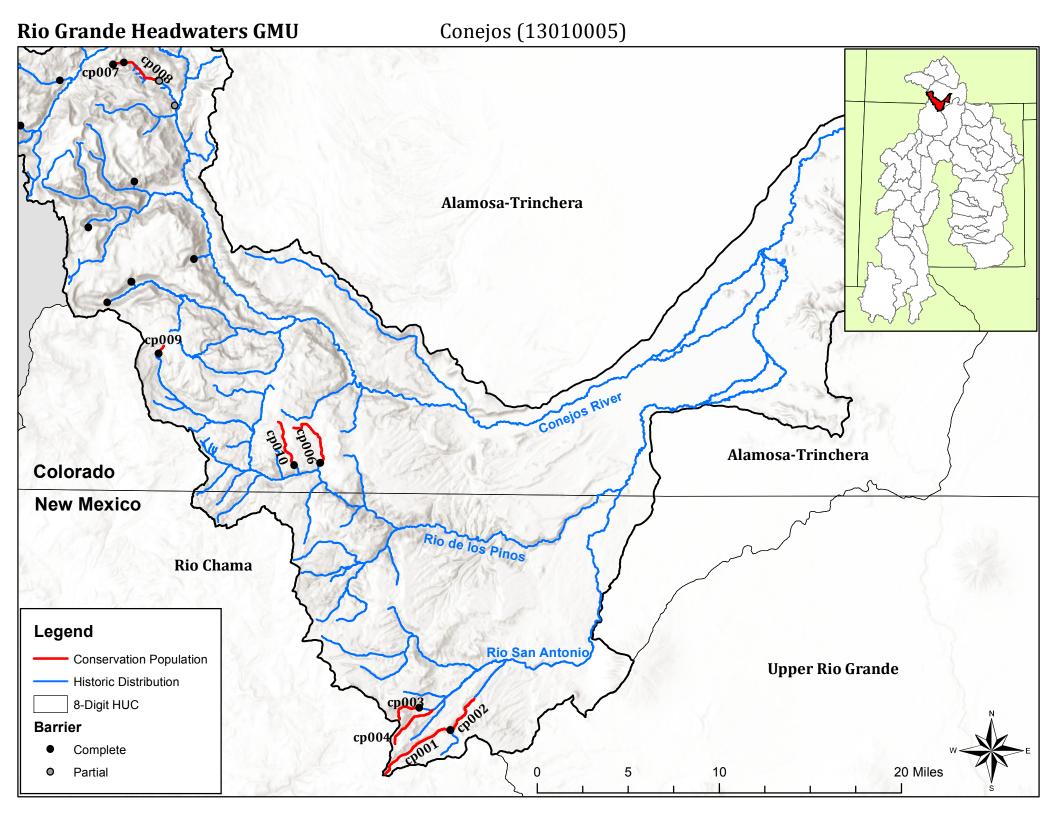
cn(1/2)	servation Ilation	Wea	ıkly Networke	ed Limited Disc	ease Risk Hybridizing	species < 10 km	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
E Unnamed Trib. #1 to Placer Creek	13010002cd025	0.8	Restored	>1% and <=10%	> 400 fish/mi	Excellent	5 to 10 feet	None
E Unnamed Trib. #2 to Placer Creek	13010002cd025	1.6	Restored	>1% and <=10%	> 400 fish/mi	Excellent	5 to 10 feet	None
Placer Creek	13010002cd025	11.9	Restored	>1% and <=10%	> 400 fish/mi	Excellent	5 to 10 feet	None
W Unnamed Trib. #1 to Placer Creek	13010002cd025	1.9	Restored	>1% and <=10%	> 400 fish/mi	Excellent	5 to 10 feet	None
W Unnamed Trib. #2 to Placer Creek	13010002cd025	2.4	Restored	>1% and <=10%	> 400 fish/mi	Excellent	5 to 10 feet	None
Grayback Creek	13010002cd044	5.9	Aboriginal	>1% and <=10%	Unknown	Fair	< 5 feet	None
Middle Fork Placer Creek	13010002cd045	0	Restored	>1% and <=10%	50 to 150 fish/mi	Fair	< 5 feet	None
South Fork Placer Creek	13010002cd045	6.9	Restored	>1% and <=10%	50 to 150 fish/mi	Fair	< 5 feet	None
Unnamed Trib. to S.F. Placer Creek	13010002cd045	0.4	Restored	>1% and <=10%	50 to 150 fish/mi	Fair	< 5 feet	None
cnll77	Conservation	Mod	lerately Netw	orked Modera	te Disease Risk < 10 km	No Risk of Hyb	ridization I	Resident
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Bernardino Creek	13010002cd047	5.6	Aboriginal	Unaltered (< 1%)	0 to 50 fish/mi	Good	5 to 10 feet	BRN,BRK
cnuzs	re Conservation oulation	Poj	pulation Isolat	ted Limited	l Disease Risk No Rish	k of Hybridization	Resident	
Stream Name Fi	ishID K	<u>m</u>	<u>Origin</u> (Senetic Status	Population Density H	abitat Quality S	Stream Width	Non-natives
El Perdido Creek 13	3010002cd048 3	.7 A	boriginal U	naltered (< 1%)	151 to 400 fish/mi	Excellent	5 to 10 feet	None


cp024	- Population		Weakly Networked		Limited Disease Risk Hyb		Hybridizing species < 10 km		Resident	
Stream Name		<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Populatio	n Density	Habitat Quality	Stream Width	Non-natives
Middle Fork Pla	icer Creek	13010002cd027	8	Restored	>1% and <=10%	151 to 40	00 fish/mi	Excellent	5 to 10 feet	None
N Unnamed Tril Middle Fork Pla		13010002cd027	1.4	Restored	>1% and <=10%	151 to 40	00 fish/mi	Excellent	5 to 10 feet	None
Unnamed Trib. : Middle Fork Pla		13010002cd027	2.7	Restored	>1% and <=10%	151 to 40	00 fish/mi	Excellent	5 to 10 feet	None
Unnamed Trib. Middle Fork Pla		13010002cd027	0.9	Restored	>1% and <=10%	151 to 40	00 fish/mi	Excellent	5 to 10 feet	None
W Unnamed Tri Middle Fork Pla		13010002cd027	1.5	Restored	>1% and <=10%	151 to 40	00 fish/mi	Excellent	5 to 10 feet	None

Rio Grande Headwaters GMU

San Luis 13010003

cn001	ore Conservation opulation	Weal	kly Network	ed Limited Dise	ease Risk No Risk	of Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Medano Creek	13010003cd001	17.5	Restored	Unaltered (< 1%)	> 400 fish/mi	Excellent	5 to 10 feet	None
Hudson Branch Medano Creek	13010003cd002	5.3	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Excellent	< 5 feet	None
Little Medano Cree	ek 13010003cd004	6	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Poor	< 5 feet	None



Rio Grande Headwaters

Saguache 13010004

cp001	Core Conservation Population	Popul	ation Isolated	Limited Disea	se Risk No Risk o	of Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Whale Creek	13010004cd007	4.2	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Good	< 5 feet	None
cp002	Core Conservation Population	Popul	ation Isolated	Limited Diseas	se Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
East Pass Creek	13010004cd005	10.5	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Fair	< 5 feet	None
Unnamed Trib. 1 East Pass Creek	to 13010004cd005	0.8	Aboriginal	Unaltered (< 1%)	50 to 150 fish/mi	Fair	< 5 feet	None
cp003	Core Conservation Population	Popul	ation Isolated	Limited Diseas	se Risk Hybridizing	species < 10 km	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Jacks Creek	13010004cd002	18.5	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Fair	< 5 feet	BRK
Cross Creek	13010004cd004	12.9	Aboriginal	Unaltered (< 1%)	> 400 fish/mi	Fair	< 5 feet	None
ср004	Conservation Population	Popul	ation Isolated	Limited Diseas	se Risk Hybridizing	species > 10 km	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
East Middle Cre	ek 13010004cd006	4.9	Restored	>1% and <=10%	> 400 fish/mi	Fair	< 5 feet	None
ср006	Core Conservation Population	Popul	ation Isolated	Limited Diseas	se Risk No Risk of H	Iybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Big Springs Cre	ek 13010004cd001	4.1	Restored	Unaltered (< 1%)	50 to 150 fish/mi	Fair	< 5 feet	None

cp007	Core Conservation Population	Pop	ulation Isolate	ed Limited Disea	ase Risk No Risk of	Hybridization	Resident	
Stream Name Middle Fork Car Creek	rnero FishID 13010004cd013	<u>Km</u> 11.3		Genetic Status Unaltered (< 1%		~	Stream Width < 5 feet	Non-natives White sucker
cp010	Core Conservation Population	Pop	ulation Isolate	ed Moderate Dis	ease Risk < 10 km N	No Risk of Hybridiza	tion Reside	ent
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
South Carnero C	Creek 13010004cd011	22.7	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Fair	10 to 15 feet	BRN,BRK, White sucker
cp011	Conservation Population	Pop	ulation Isolate	ed Significant D	isease Risk (sympatric)	No Risk of Hybri	dization Re	esident
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Miners Creek	13010004cd008	7	Aboriginal	>1% and <=10%	151 to 400 fish/mi	Fair	< 5 feet	BRK
Prong Creek	13010004cd009	6	Aboriginal	>1% and <=10%	151 to 400 fish/mi	Fair	5 to 10 feet	BRK
cp012	Conservation Population	Pop	ulation Isolate	ed Significant D	isease Risk (sympatric)	No Risk of Hybri	dization Re	esident
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Densit	y <u>Habitat Qualit</u>	y Stream Width	<u>Non-natives</u>
Cave Creek	13010004cd010	10.2	Aboriginal	>1% and <=10%	50 to 150 fish/mi	Fair	5 to 10 feet	BRN,BRK, White sucker

Rio Grande Headwaters GMU

Conejos 13010005

cp001	Core Conservation Population	Popu	lation Isolated	l Limited Disea	ase Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Tio Grande	13010005cd001	7.6	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	< 5 feet	BRN
cp002	Core Conservation Population	Popu	lation Isolated	l Limited Diseas	se Risk No Risk of	Hybridization	Resident	
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic S	tatus Popu		abitat Stream	Non-natives
Tio Grande	13010005cd002	4.5	Aboriginal	Not Tested - Suspec	cted Unaltered 151		rair Width < 5 feet	BRN
cp003	Core Conservation Population	Popu	lation Isolated	l Limited Diseas	se Risk No Risk of	Hybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Stream Name Tanques Creek	<u>FishID</u> 13010005cd003	<u>Km</u> 2.9	Origin Aboriginal	Genetic Status Unaltered (< 1%)	Population Density 151 to 400 fish/mi	Habitat Quality Good	Stream Width 5 to 10 feet	Non-natives BRN,BRK
		2.9	· · · · · · · · · · · · · · · · · · ·	Unaltered (< 1%)	151 to 400 fish/mi	Good		
Tanques Creek	13010005cd003 Core Conservation	2.9	Aboriginal	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	
Tanques Creek cp004	13010005cd003 Core Conservation Population	2.9 Popu	Aboriginal	Unaltered (< 1%) Limited Disease	151 to 400 fish/mi se Risk No Risk of H	Good	5 to 10 feet Resident	BRN,BRK
Tanques Creek cp004 Stream Name	13010005cd003 Core Conservation Population FishID	2.9 Popu Km 5.1	Aboriginal lation Isolated Origin	Unaltered (< 1%) Limited Disease Genetic Status Unaltered (< 1%)	151 to 400 fish/mi se Risk No Risk of H Population Density 50 to 150 fish/mi	Good Tybridization Habitat Quality	5 to 10 feet Resident Stream Width	BRN,BRK Non-natives
Tanques Creek cp004 Stream Name Rio Nutritas	13010005cd003 Core Conservation Population FishID 13010005cd004 Core Conservation	2.9 Popu Km 5.1	Aboriginal lation Isolated Origin Aboriginal	Unaltered (< 1%) Limited Disease Genetic Status Unaltered (< 1%)	151 to 400 fish/mi se Risk No Risk of H Population Density 50 to 150 fish/mi	Good Tybridization Habitat Quality Good	5 to 10 feet Resident Stream Width < 5 feet	BRN,BRK Non-natives

ср007	Core Conservation Population	Populati	on Isolated	Limited Diseas	e Risk Hybridizing s	pecies > 10 km	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	y <u>Habitat Quality</u>	Stream Width	Non-natives
Lake Fork Cone	jos River 13010005cd00	9 1	Restored	Unaltered (< 1%	151 to 400 fish/mi	Excellent	5 to 10 feet	None
cp008	Core Conservation Population	Populati	on Isolated	Limited Diseas	e Risk Hybridizing s	pecies < 10 km	Resident, Lacustri	ne
Stream Name	FishID	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	y Habitat Quality	Stream Width	Non-natives
Lake Fork Cone	jos River 13010005cd00	5 4	Restored	Unaltered (< 1%) > 400 fish/mi	Good	5 to 10 feet	None
ср009	Core Conservation Population	Populati	on Isolated	Limited Disease	Risk No Risk of H	ybridization	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Rio de los Pinos	13010005cd008	0.9 F	Restored	Unaltered (< 1%)	151 to 400 fish/mi	Good	5 to 10 feet	None
cp010	Core Conservation Population	Populati	on Isolated	Limited Disease	Risk No Risk of Hy	bridization F	Resident	
Stream Name	<u>FishID</u>	<u>Km</u>	<u>Origin</u>	Genetic Status	Population Density	Habitat Quality	Stream Width	Non-natives
Cascade Creek	13010005cd007	4.7 A	boriginal	Unaltered (< 1%)	> 400 fish/mi	Good	5 to 10 feet	None

Appendix B. Current, short-term (2040s), and long-term (2080s) persistence probabilities for all Rio Grande Cutthroat Trout conservation populations in 2016.

Population ID	GMU	Stream Name	Proba	bility of Po	ersistence
•			Current	Short-	Long-
				term	term
11080001cp001	Canadian	Ricardo Creek	0.573	0.094	0.029
		E. Trib. Ricardo Creek			
		Gold Creek			
		Elk Creek			
		Leandro Creek			
		Little Vermejo Creek			
		Ricardo Creek			
		Vermejo River			
11080001cp002		Little Vermejo Creek	0.438	0.063	0.000
11080001cp003 Leandro Creek		Leandro Creek	0.659	0.531	0.473
11080001cp003 Leandro Creek 11080002cp001 McCrystal Creek			0.100	0.019	0.004
		North Ponil Creek			
11080002cp002		South Ponil Creek	0.596	0.563	0.512
11080002cp003		Middle Ponil Creek	0.790	0.761	0.697
11080002cp005		Clear Creek	0.800	0.720	0.714
11080004cp001		East Fork Luna Creek	0.443	0.061	0.030
11080004cp002		West Fork Luna Creek	0.281	0.024	0.000
11080004cp003		Rito Morphy	0.269	0.052	0.011
11080004cp004		Santiago Creek	0.272	0.048	0.012
13010001cp002	Rio Grande	West Alder Creek	0.274	0.026	0.000
	Headwaters				
13010002cp001		San Francisco Creek	0.610	0.142	0.066
		Middle Fork San Francisco			
		Creek			
13010002cp002		Cat Creek	0.670	0.361	0.092
		South Fork Cat Creek			
13010002cp003		Rhodes Gulch	0.541	0.428	0.380
13010002cp004		Torsido Creek	0.252	0.029	0.000
13010002cp005		Jim Creek	0.284	0.031	0.000
13010002cp006		Cuates Creek	0.639	0.510	0.466
13010002cp007		Jaroso Creek	0.675	0.654	0.632
13010002cp008		Jaroso Creek	0.450	0.081	0.031
13010002cp009		Torcido Creek	0.722	0.702	0.682
13010002cp010		Alamosito Creek	0.295	0.038	0.000
13010002cp011		Vallejos Creek	0.262	0.031	0.000
		North Vallejos Creek			
13010002cp012		Trinchera Creek	0.236	0.020	0.000
		South Fork Trinchera Creek			
		Deep Canyon	_		_
13010002cp014		North Fork Trinchera Creek	0.313	0.044	0.000

Population ID	GMU	Stream Name	Proba	bility of Pe	ersistence
•			Current	Short-	Long-
				term	term
13010002cp015		West Indian Creek	0.309	0.042	0.000
•		South Fork West Indian Creek			
13010002cp016		Wagon Creek	0.428	0.068	0.022
_		Placer Creek			
		Sangre de Cristo Creek			
13010002cp017		Little Ute Creek	0.706	0.675	0.640
13010002cp018		Cuates Creek	0.460	0.112	0.044
13010002cp019		Torcido Creek	0.470	0.126	0.052
13010002cp020		Alamosito Creek	0.470	0.099	0.044
13010002cp021		Placer Creek	0.709	0.674	0.620
_		Middle Fork Placer Creek			
		South Fork Placer Creek			
		Grayback Creek			
13010002cp022		Bernardino Creek	0.237	0.024	0.000
13010002cp023		El Perdido Creek	0.304	0.232	0.311
13010002cp024		Middle Fork Placer Creek	0.709	0.674	0.620
13010003cp001		Medano Creek	0.754	0.734	0.714
•		Little Medano Creek			
		Hudson Branch Medano Creek			
13010004cp001		Whale Creek	0.344	0.302	0.477
13010004cp002		East Pass Creek	0.693	0.621	0.546
13010004cp003		Jacks Creek	0.324	0.044	0.000
-		Cross Creek			
13010004cp004		East Middle Creek	0.670	0.557	0.514
13010004cp006		Big Springs Creek	0.599	0.551	0.486
13010004cp007		Middle Fork Carnero Creek	0.693	0.634	0.588
13010004cp010		South Carnero Creek	0.520	0.146	0.065
13010004cp011		Miners Creek	0.539	0.104	0.044
•		Prong Creek			
13010004cp012		Cave Creek	0.479	0.097	0.039
13010005cp001		Tio Grande	0.291	0.042	0.000
13010005cp002		Tio Grande	0.405	0.063	0.014
13010005cp003		Tanques Creek	0.469	0.366	0.319
13010005cp004		Rio Nutritas	0.213	0.018	0.000
13010005cp006		Osier Creek	0.644	0.519	0.490
13010005cp007		Lake Fork Conejos River	0.518	0.326	0.270
13010005cp008		Lake Fork Conejos River	0.707	0.634	0.581
13010005cp009		Rio de los Pinos	0.301	0.175	0.270
13010005cp010		Cascade Creek	0.563	0.510	0.466
13020101cp001	Lower Rio	Costilla Creek	0.806	0.786	0.767
-	Grande	East Fork Costilla Creek			
		West Fork Costilla Creek			
		State Line Creek			

Population ID	GMU	Stream Name	Proba	bility of Po	ersistence
•			Current	Short-	Long-
				term	term
13020101cp002		Costilla Creek	0.806	0.786	0.767
		Glacier Creek			
		Patten Creek			
		Frey Creek			
13020101cp003		Powderhouse Creek	0.563	0.510	0.466
13020101cp004		Powderhouse Creek	0.376	0.049	0.014
13020101cp005		La Cueva Creek	0.234	0.048	0.010
13020101cp006		Comanche Creek	0.680	0.659	0.559
		Vidal Creek			
		La Belle Creek			
		Grassy Creek			
		Holman Creek			
		Gold Creek			
		Little Costilla Creek			
13020101cp007		Fernandez Creek	0.210	0.021	0.000
13020101cp008		Ute Creek	0.571	0.307	0.050
13020101cp009		Cabresto Creek	0.239	0.019	0.000
13020101cp010		Bitter Creek	0.517	0.201	0.052
13020101cp011		Columbine Creek	0.054	0.012	0.000
		Placer Fork			
		Willow Creek			
		Deer Creek			
13020101cp012		San Cristobal Creek	0.641	0.230	0.035
13020101cp013		Yerba Creek	0.403	0.037	0.000
13020101cp015		Italianos Creek	0.696	0.637	0.588
13020101cp016		Gavilan Creek	0.370	0.029	0.000
13020101cp017		South Fork Rio Hondo	0.358	0.036	0.000
13020101cp018		Tienditas Creek	0.257	0.018	0.000
13020101cp019		Frijoles Creek	0.243	0.024	0.000
13020101cp020		Palociento Creek	0.379	0.050	0.000
13020101cp021		Rio Grande del Rancho	0.121	0.010	0.000
13020101cp022		Rito la Presa	0.268	0.030	0.000
13020101cp023		Policarpio Creek	0.639	0.510	0.531
13020101cp024		Osha Creek	0.796	0.729	0.756
13020101cp025		Rito Angostura	0.771	0.645	0.679
13020101cp026		Alamitos Creek	0.801	0.736	0.761
13020101cp027		Middle Fork Rio Santa Barbara	0.235	0.053	0.000
13020101cp028		East Fork Rio Santa Barbara	0.229	0.019	0.000
13020101cp029		West Fork Rio Santa Barbara	0.381	0.050	0.000
		Middle Fork Rio Santa Barbara			
400000000000000000000000000000000000000		East Fork Rio Santa Barbara		0.00-	0.55
13020101cp030		Rio de las Trampas	0.413	0.087	0.021
13020101cp031		Rio San Leonardo	0.405	0.116	0.086

Population ID	GMU	Stream Name	Proba	bility of Pe	ersistence
•			Current	Short-	Long-
				term	term
13020101cp032		Rio de Truchas	0.515	0.280	0.248
-		Rio de la Cebolla			
13020101cp034		Rio Quemado	0.268	0.030	0.000
•		North Fork Rio Quemado			
		South Fork Rio Quemado			
13020101cp035		Jicarita Creek	0.476	0.116	0.099
13020101cp036		Indian Creek	0.674	0.576	0.535
13020101cp037		Rio Medio	0.381	0.050	0.000
13020101cp038		Rio Frijoles	0.378	0.044	0.000
-		Rito Jaroso			
13020101cp040		Rio Molino	0.766	0.637	0.589
13020101cp041		Casias Creek	0.801	0.736	0.700
13020101cp042		Chuckwagon Creek	0.210	0.021	0.000
13020101cp043		Allen Creek	0.696	0.635	0.585
13020101cp044		Long Canyon	0.746	0.622	0.557
13020101cp045		Beaver Creek	0.793	0.575	0.533
13020102cp001		Nabor Creek	0.771	0.707	0.612
13020102cp002		Little Willow Creek	0.526	0.397	0.311
13020102cp003		Poso Creek	0.295	0.033	0.000
13020102cp004		Jaroso Creek	0.291	0.059	0.013
13020102cp005		Canjilon Creek	0.566	0.270	0.049
13020102cp006		El Rito	0.680	0.610	0.640
13020102cp007		El Rito	0.527	0.296	0.065
13020102cp008		Canones Creek	0.676	0.655	0.559
13020102cp009		Polvadera Creek	0.676	0.655	0.635
13020102cp010		Rio del Oso	0.560	0.219	0.025
		Rito de Abiquiu			
13020102cp011		Wolf Creek	0.221	0.023	0.000
13020102cp012		East Fork Wolf Creek	0.754	0.666	0.615
13020102cp016		Chihuahuenos Creek	0.564	0.221	0.031
13020201cp001		Capulin Creek	0.667	0.393	0.063
13020201cp002		Medio Dia Creek	0.583	0.243	0.039
13020202cp001		Rio Cebolla	0.561	0.502	0.472
13020202cp002		Rito de las Palomas	0.408	0.041	0.000
13020202cp003		Rito de las Vacas	0.319	0.043	0.000
		Rito de las Perchas			
		Rito Anastacio			
13020204cp001		La Jara Creek	0.272	0.048	0.012
13020204cp002		Rito de los Pinos	0.297	0.036	0.000
13020204cp003		Rio Puerco	0.294	0.060	0.015
13060001cp001	Pecos	Rio Mora	0.185	0.016	0.000
13060001cp002		Unnamed Trib. to Rio Mora	0.332	0.026	0.000
13060001cp003		Rio Valdez	0.204	0.025	0.000
_					

Population ID	GMU	Stream Name	Proba	bility of Po	ersistence
			Current	Short-	Long-
				term	term
13060001cp004		Pecos River	0.422	0.051	0.000
13060001cp005		Rito del Padre	0.441	0.059	0.000
		Rito Maestas			
13060001cp006		Rito los Esteros	0.216	0.014	0.000
13060001cp007		Jacks Creek	0.432	0.055	0.000
13060001cp008		Cave Creek	0.259	0.023	0.000
13060001cp009		Macho Creek	0.766	0.693	0.625
13060001cp010		Dalton Creek	0.771	0.641	0.652
13060001cp011		Bear Creek	0.766	0.635	0.647
13060005cp001		Pinelodge Creek	0.229	0.200	0.126

Appendix C. Data for each RGCT conservation population incorporated in the 2016 Status Assessment Bayesian Network model.

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
11080001cp001	0.573	Current	69.33	15.46	20.93	0.2582	None	Invaded	Invaded	Far	None	Strong	Sporadic	High	*	None	10966	0.25	Minimal
11080001cp002	0.438	Current	11.94	13.12	19.14	0.0498	Complete	Invaded	Absent	Far	None	Isolated	None	High	*	None	1925	0.25	Minimal
11080001cp003	0.659	Current	3.08	10.85	16.34	0.0245	Complete	Invaded	Near	Absent	Annual	Isolated	None	High	*	None	708	0.25	Minimal {0.40,
11080002cp001	0.100	Current	15.22	14.43	19.87	0.0456	None	Near	Far	Near	None	Isolated	None	High	Present	Yes	4718	0.25	0.60}
11080002cp002	0.596	Current	15.18	16.1	21.48	0.0496	Complete	Near	Far	Near	None	Isolated	None	High	*	None	4579	0.25	$\{0.1, 0.9\}$
11080002cp003	0.790	Current	9.6	12	18.12	0.0484	Complete	Near	Near	Near	None	Isolated	None	High	*	None	1676	0.25	Minimal
11080002cp005	0.800	Current	7.51	15.18	20.95	0.0324	Complete	Near	Far	Near	None	Moderate	None	High	*	None	2388	0.25	Minimal {0.20,
11080004cp001	0.443	Current	6.77	12.5	17.93	0.0362	None	Invaded	Near	Absent	None	Isolated	Sporadic	High	Present	Yes	1108	0.25	0.80}
11080004cp002	0.281	Current	4.56	12.61	18.03	0.0372	Partial	Invaded	Near	Absent	None	Isolated	None	High	*	None	735	0.25	$\{0.1, 0.9\}$
11080004cp003	0.269	Current	6.75	14.5	18.86	0.0321	None	Near	Near	Absent	None	Moderate	None	High	*	None	2039	0.25	$\{0.1, 0.9\}$
11080004cp004	0.272	Current	6.55	12.89	17.46	0.0335	None	Near	Near	Absent	None	Isolated	None	High	*	None	1971	0.25	{0.1, 0.9} {0.34,
13010001cp002	0.274	Current	7.17	10.41	14.85	0.0545	Partial	Invaded	Far	Far	None	Isolated	None	Moderate	*	None	107	0.25	0.66}
13010002cp001	0.610	Current	25.29	10.09	13.87	0.0936	Complete	Invaded	Absent	Near	None	Moderate	Sporadic	Moderate	*	None	4133	0.25	{0.31, 0.69}
13010002cp002	0.670	Current	7.63	13	17	0.0429	Partial	Far	Absent	Absent	None	Isolated	None	Moderate	Present	Yes	2868	0.25	{0.31, 0.69}
13010002cp003	0.541	Current	3.5	9.77	14.34	0.0233	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	594	0.25	{0.25, 0.75}
13010002cp004	0.252	Current	10.36	13.98	20.97	0.0491	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	80	0.25	{0.1, 0.9}
13010002cp005	0.284	Current	6.67	12.83	19.29	0.0392	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1073	0.25	{0.40, 0.60}
13010002cp006	0.639	Current	6.06	10.59	13.56	0.0374	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	{0.15, 0.85}
13010002cp007	0.675	Current	9.25	10.34	14.27	0.0339	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2542	0.25	{0.15, 0.85}
13010002cp008	0.450		6.23	13.49	16.82	0.0627	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	955	0.25	{0.25, 0.75}
•																			{0.15,
13010002cp009	0.722	Current	13.23	12.87	15.89	0.0464	Complete	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	7682	0.25	0.85} {0.15,
13010002cp010	0.295	Current	4.88	9.15	12.97	0.0353	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	764	0.25	0.85} {0.15,
13010002cp011	0.262	Current	22.51	10.6	15.24	0.0531	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	593	0.25	0.85} {0.15,
13010002cp012	0.236	Current	29.23	9.69	14.72	0.1195	None	Invaded	Absent	Far	None	Strong	None	High	*	None	641	0.25	0.13,
13010002cp014	0.313	Current	11.53	12.3	16.99	0.0937	Complete	Invaded	Absent	Far	None	Moderate	None	High	*	None	1779	0.25	{0.1, 0.9}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010002cp015	0.309	Current	17.09	13.81	18.58	0.1711	Complete	Invaded	Absent	Near	None	Isolated	None	High	*	None	4944	0.25	{0.15, 0.85} {0.20,
13010002cp016	0.428	Current	37.96	15.84	20.47	0.2067	None	Invaded	Far	Infected	None	Moderate	Sporadic	Moderate	Present	Yes	15590	0.25	0.80}
13010002cp017	0.706	Current	2.69	10.29	12.61	0.0781	Complete	Near	Near	Absent	None	Isolated	None	Moderate	*	None	819	0.25	Minimal {0.20,
13010002cp018	0.460	Current	5.47	13.78	16.25	0.0635	None	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	1677	0.25	0.80}
13010002cp019	0.470	Current	3.34	14.82	18.12	0.0814	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	1025	0.25	{0.20, 0.80}
13010002cp020	0.470	Current	0.75	10.77	13.99	0.0412	Partial	Invaded	Absent	Far	None	Isolated	Consistent	Moderate	*	None	80	0.25	{0.15, 0.85}
13010002cp021	0.709	Current	31.76	14.36	19.43	0.0953	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	9964	0.25	{0.1, 0.9}
13010002cp022	0.237	Current	5.56	9.12	13.88	0.0776	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	194	0.25	$\{0.1, 0.9\}$
13010002cp023	0.304	Current	3.71	8.67	12.89	0.0426	Complete	*	Absent	Absent	None	Isolated	None	High	*	None	946	0.25	$\{0.1, 0.9\}$
13010002cp024	0.709	Current	14.39	12.98	18.16	0.0446	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	5630	0.25	{0.1, 0.9} {0.3,
13010003cp001	0.754	Current	28.78	11.7	15.61	0.1071	Complete	Far	Absent	Absent	None	Strong	Consistent	High	*	None	15906	0.25	0.70}
13010004cp001	0.344	Current	4.25	8.27	13.69	0.0249	Complete	Near	Far	Absent	None	Isolated	None	Moderate	*	None	281	0.25	{0.1, 0.9} {0.31,
13010004cp002	0.693	Current	11.23	12.75	15.04	0.0441	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	785	0.25	0.69} {0.25,
13010004cp003	0.324	Current	31.36	13.28	16.59	0.0494	Complete	Invaded	Near	Near	None	Moderate	None	Moderate	*	None	11149	0.25	0.75}
13010004cp004	0.670	Current	4.91	10.4	14.94	0.0352	Complete	Near	Near	Far	None	Isolated	None	Moderate	*	None	912	0.25	{0.1, 0.9} {0.25,
13010004cp006	0.599	Current	4.07	14.5	17.71	0.0218	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	941	0.25	0.75}
13010004cp007	0.693	Current	11.3	12.84	17.37	0.0443	Complete	Near	Absent	Absent	None	Isolated	None	Moderate	*	None	621	0.25	{0.31, 0.69}
13010004cp010	0.520	Current	22.67	13.23	17.55	0.0836	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	2472.5	0.25	{0.35, 0.65}
13010004cp011	0.539	Current	12.97	10.83	15.46	0.023	Partial	Invaded	Invaded	Absent	None	Moderate	Sporadic	Moderate	*	None	2025	0.25	{0.22, 0.78}
13010004cp012	0.479	Current	10.17	12.53	15.98	0.0339	None	Invaded	Invaded	Absent	None	Isolated	Sporadic	High	*	None	1570	0.25	{0.25, 0.75}
13010005cp001	0.291	Current	7.64	14.32	20.77	0.0288	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1196	0.25	$\{0.1, 0.9\}$
13010005cp002	0.405	Current	4.47	16.09	22.67	0.0571	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	713	0.25	$\{0.1, 0.9\}$
13010005cp003	0.469	Current	2.95	13.47	20.34	0.028	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	462	0.25	{0.1, 0.9} {0.20,
13010005cp004	0.213	Current	5.06	13.75	20.96	0.0272	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	801	0.25	0.80}
13010005cp006	0.644	Current	5.9	12.99	18.52	0.0312	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	2007	0.25	{0.20, 0.80}
13010005cp007	0.518	Current	1.01	12.37	18.17	0.0324	Complete	Near	Near	Near	None	Isolated	None	High	*	None	217	0.25	{0.1, 0.9}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010005cp008	0.707	Current	3.97	13.92	19.93	0.0465	Complete	Near	Near	Near	None	Isolated	Consistent	High	*	None	1466	0.25	{0.25, 0.75}
13010005cp009	0.301	Current	0.87	8.73	14.94	0.0314	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	138	0.25	{0.1, 0.9}
13010005cp010	0.563	Current	4.69	12.9	18.43	0.0279	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1499	0.25	{0.20, 0.80}
13020101cp001	0.806	Current	14.57	10.24	18.06	0.0313	Complete	Far	Far	Absent	None	Strong	None	High	*	None	2079	0.25	Minimal
13020101cp002	0.806	Current	15.19	12.17	20.34	0.0558	Complete	Near	Near	Absent	None	Strong	Sporadic	High	*	None	6350	0.25	Minimal
13020101cp003	0.563	Current	6.2	10.27	15.55	0.0259	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	1175	0.25	$\{0.1, 0.9\}$
13020101cp004	0.376	Current	2.09	12.58	17.74	0.0362	None	Invaded	Near	Absent	None	Isolated	Sporadic	High	*	None	327	0.25	$\{0.1, 0.9\}$
13020101cp005	0.234	Current	5.09	11.62	16.26	0.0264	None	Near	Near	Absent	None	Isolated	None	High	*	None	1603	0.25	{0.1, 0.9}
13020101cp006	0.680	Current	44.73	13.99	20.55	0.049	Complete	Near	Near	Absent	None	Strong	None	High	Present	Yes	13688	0.25	{0.20, 0.80} {0.20,
13020101cp007	0.210	Current	4.42	13.32	19.56	0.0243	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	688	0.25	0.20, 0.80} {0.20,
13020101cp008	0.571	Current	13.82	11.83	17.13	0.0459	None	Far	Near	Absent	None	Moderate	None	High	*	None	4204	0.25	0.20, 0.80} {0.20,
13020101cp009	0.239	Current	13.72	10.76	16.63	0.0374	None	Invaded	Near	Far	None	Moderate	None	High	*	None	2126	0.25	0.80} {0.3,
13020101cp010	0.517	Current	2.85	9.98	14.64	0.0289	Partial	Far	Near	Far	None	Isolated	None	High	*	None	878	0.25	0.70}
13020101cp011	0.054	Current	17.85	9	12.15	0.0447	Complete	Invaded	Far	Infected	None	Strong	None	High	*	None	3357	0.25	Minimal
13020101cp012	0.641	Current	6.46	9.36	11.93	0.0348	None	Far	Far	Far	None	Isolated	None	High	*	None	1966	0.25	Minimal
13020101cp013	0.403	Current	4.74	12.15	15.53	0.0297	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	765	0.25	Minimal
13020101cp015	0.696	Current	3.85	11.37	15	0.0289	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	Minimal
13020101cp016	0.370	Current	3.37	10.82	13.63	0.0328	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	549	0.25	Minimal
13020101cp017	0.358	Current	6.26	11.43	14.78	0.0393	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	994	0.25	Minimal {0.20,
13020101cp018	0.257	Current	3.19	13	17.64	0.0324	None	Invaded	Far	Absent	None	Isolated	None	High	*	None	513	0.25	0.80} {0.20,
13020101cp019	0.243	Current	4.96	9.12	14.66	0.0282	Partial	Invaded	Far	Absent	None	Isolated	None	High	*	None	694	0.25	0.80}
13020101cp020	0.379	Current	3.94	10.16	15.25	0.0277	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	632	0.25	Minimal
13020101cp021	0.121	Current	4.27	8.86	13.48	0.0336	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	674	0.25	{0.40, 0.60} {0.20,
13020101cp022	0.268	Current	14.84	10.45	15.85	0.0436	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	2352	0.25	0.80}
13020101cp023	0.639	Current	4.85	10.55	15.66	0.0336	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1335	0.25	$\{0.1, 0.9\}$
13020101cp024	0.796	Current	8.77	12.86	16.59	0.0421	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2793	0.25	Minimal
13020101cp025	0.771	Current	6.4	9.25	14.43	0.0461	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2016	0.25	Minimal

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020101cp026	0.801	Current	9.57	10.2	16.01	0.0408	Complete	Near	Absent	Absent	None	Moderate	None	High	*	None	4434	0.25	Minimal
13020101cp027	0.235	Current	7	8.98	12.12	0.0356	Complete	Invaded	Far	Absent	None	Moderate	None	High	*	None	405	0.25	Minimal
13020101cp028	0.229	Current	4.1	8.03	12.58	0.0408	Partial	Invaded	Far	Absent	None	Isolated	None	High	*	None	655	0.25	Minimal
13020101cp029	0.381	Current	14.5	9.18	13.71	0.0604	None	Invaded	Far	Absent	None	Moderate	None	High	*	None	2344	0.25	Minimal
13020101cp030	0.413	Current	8.22	10.63	11.22	0.0339	None	Near	Near	Absent	None	Isolated	None	High	*	None	2588	0.25	Minimal
13020101cp031	0.405	Current	5.78	8.62	12.11	0.0277	Partial	Near	Near	Absent	None	Isolated	None	High	*	None	1852	0.25	Minimal
13020101cp032	0.515	Current	17.18	12.1	16.29	0.0438	*	Near	Near	Absent	None	Moderate	None	High	*	None	5268	0.25	{0.20, 0.80}
13020101cp034	0.268	Current	16.81	10.76	14.64	0.0439	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	2623	0.25	{0.1, 0.9}
13020101cp035	0.476	Current	4.08	8.73	12.38	0.0329	Partial	Near	Near	Absent	None	Isolated	None	High	*	None	1239	0.25	Minimal
13020101cp036	0.674	Current	2.8	10.55	14.47	0.0273	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	845	0.25	Minimal
13020101cp037	0.381	Current	13.13	9.87	13.46	0.0501	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	2071	0.25	Minimal
13020101cp038	0.378	Current	12.55	9.66	13.09	0.0465	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	1984	0.25	Minimal
13020101cp040	0.766	Current	5.6	11.14	14.47	0.0305	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	1795	0.25	Minimal
13020101cp041	0.801	Current	7.25	9.64	15.93	0.0325	Complete	Near	Near	Absent	None	Moderate	None	High	*	None	2272	0.25	Minimal
13020101cp042	0.210	Current	4.21	12.44	18.18	0.0206	None	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	662	0.25	{0.20, 0.80}
13020101cp043	0.696	Current	3.62	11.25	17.02	0.0224	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1129	0.25	Minimal
13020101cp044	0.746	Current	4.15	10.45	16.52	0.0325	Complete	Far	Far	Far	None	Moderate	None	High	*	None	742	0.25	Minimal
13020101cp045	0.793	Current	3.39	11.08	17.24	0.0311	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1057	0.25	Minimal
13020102cp001	0.771	Current	5.87	14.54	18.58	0.0364	Complete	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	2172	0.25	Minimal
13020102cp002	0.526	Current	3.66	13.58	18.06	0.0365	Complete	*	Invaded	Absent	None	Isolated	None	High	*	None	1155	0.25	$\{0.1, 0.9\}$
13020102cp003	0.295	Current	3.94	12.63	17.44	0.0316	Complete	Invaded	*	Absent	None	Isolated	None	High	*	None	626	0.25	{0.1, 0.9}
13020102cp004	0.291	Current	7.96	12.69	18.14	0.0365	None	Near	Far	Absent	None	Isolated	None	High	*	None	2446	0.25	{0.20, 0.80}
13020102cp005	0.566	Current	8.08	12.68	18.58	0.0359	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2596	0.25	{0.3, 0.70}
13020102cp006	0.680	Current	12.75	13.5	19.4	0.0419	Complete	Far	Absent	Absent	None	Moderate	None	High	*	None	2172	0.25	{0.1, 0.9}
13020102cp007	0.527	Current	5.31	16.34	22.51	0.1037	None	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	1714	0.25	{0.20, 0.80}
13020102cp008	0.676	Current	10.71	15.5	20.65	0.096	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	3381	0.25	{0.1, 0.9}
13020102cp009	0.676	Current	13.07	14.07	19.41	0.0699	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	2600	0.25	{0.3, 0.70}
13020102cp010	0.560	Current	12.45	15.44	20.64	0.0662	None	Far	Absent	Far	None	Isolated	None	High	*	None	3866	0.25	{0.1, 0.9}
								**						0					(· · · / · · · ·)

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020102cp011	0.221	Current	0.61	12.64	17.1	0.0407	Complete	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	92	0.25	{0.25, 0.75}
13020102cp012	0.754	Current	3.71	12.13	16.73	0.0299	Complete	Near	Far	Absent	None	Moderate	None	High	*	None	1167	0.25	Minimal {0.20,
13020102cp016	0.564	Current	10.74	14.62	19.48	0.0701	None	Far	Far	Far	None	Moderate	None	High	*	None	3473	0.25	0.80}
13020201cp001	0.667	Current	11.97	18.05	21.91	0.0669	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2436	0.25	Minimal
13020201cp002	0.583	Current	0.7	15.72	20.55	0.0366	None	Far	Absent	Absent	None	Isolated	None	Moderate	*	None	218	0.25	Minimal {0.20,
13020202cp001	0.561	Current	6.71	15.27	19.41	0.0737	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	3254	0.25	0.80}
13020202cp002	0.408	Current	6.87	12.99	19.97	0.0356	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1120	0.25	Minimal
13020202cp003	0.319	Current	19.95	11.32	16.84	0.0461	Complete	Invaded	Absent	Absent	None	Moderate	None	High	*	None	3241	0.25	$\{0.1, 0.9\}$
13020204cp001	0.272	Current	4.36	12.72	15.55	0.043	None	Near	Absent	Absent	None	Isolated	None	High	*	None	1341	0.25	$\{0.1, 0.9\}$
13020204cp002	0.297	Current	2.32	11.27	14.17	0.0249	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	361	0.25	Minimal
13020204cp003	0.294	Current	14.39	10.89	15.24	0.0359	None	Near	Absent	Absent	None	Moderate	None	High	*	None	4492	0.25	$\{0.1, 0.9\}$
13060001cp001	0.185	Current	2.43	8.76	13.33	0.0353	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	397	0.25	Minimal
13060001cp002	0.332	Current	3.23	9.54	13.74	0.0254	Partial	Invaded	Far	Far	None	Isolated	None	High	*	None	528	0.25	Minimal
13060001cp003	0.204	Current	3.66	8.26	12.91	0.027	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	594	0.25	Minimal
13060001cp004	0.422	Current	6.33	9.45	16.07	0.0333	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	1013	0.25	Minimal
13060001cp005	0.441	Current	9.94	9.12	13.54	0.04	Complete	Invaded	Far	Far	None	Moderate	None	High	*	None	1620	0.25	Minimal
13060001cp006	0.216	Current	2.48	10.32	13.77	0.0266	None	Invaded	Far	Far	None	Isolated	None	High	*	None	375	0.25	Minimal
13060001cp007	0.432	Current	11.34	11.1	14.41	0.0448	Complete	Invaded	Far	Near	None	Isolated	None	High	*	None	1850	0.25	Minimal
13060001cp008	0.259	Current	2.71	9.13	11.99	0.0254	*	Invaded	Far	Far	None	Isolated	None	High	*	None	418	0.25	Minimal
13060001cp009	0.766	Current	4.46	15.08	17.44	0.0764	Complete	Near	Far	Near	None	Isolated	None	High	*	None	1077	0.25	Minimal
13060001cp010	0.771	Current	6.74	13.81	16.6	0.0338	Complete	Near	Far	Near	None	Isolated	None	High	*	None	2122	0.25	Minimal
13060001cp011	0.766	Current	5.64	10.45	13.78	0.0366	Complete	Near	Far	Far	None	Isolated	None	High	*	None	1772	0.25	Minimal
13060005cp001	0.229	Current Short-	3.85	21.1	24.3	0.049	Complete	Far	Far	Absent	None	Isolated	None	High	*	None	815	0.25	Minimal
11080001cp001	0.094	term	69.33	15.46	21.03	0.261	None	Invaded	Invaded	Far	None	Strong	Sporadic	High	*	None	10966	0.25	Minimal
11080001cp002	0.063	Short- term	11.94	13.12	19.24	0.0503	Complete	Invaded	Absent	Far	None	Isolated	None	High	*	None	1925	0.25	Minimal
11080001cp003	0.531	Short- term	3.08	10.85	16.43	0.0248	Complete	Invaded	Near	Absent	Annual	Isolated	None	High	*	None	708	0.25	Minimal
11080002cp001	0.019	Short- term	15.22	14.68	20.09	0.0461	None	Near	Far	Near	None	Isolated	None	High	Present	Yes	4718	0.25	{0.40, 0.60}
11080002cp002	0.563	Short- term	15.18	16.35	21.69	0.0399	Complete	Near	Far	Near	None	Isolated	None	High	*	None	4579	0.25	{0.1, 0.9}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
11080002cp003	0.761	Short- term Short-	9.6	12.25	18.34	0.0389	Complete	Near	Near	Near	None	Isolated	None	High	*	None	1676	0.25	Minimal
11080002cp005	0.720	term Short-	7.51	15.43	21.17	0.02	Complete	Near	Far	Near	None	Moderate	None	High	*	None	2388	0.25	Minimal {0.20,
11080004cp001	0.061	term Short-	6.77	12.52	17.98	0.0223	None	Invaded	Near	Absent	None	Isolated	Sporadic	High	Present	Yes	1108	0.25	0.80}
11080004cp002	0.024	term Short-	4.56	12.62	18.08	0.0229	Partial	Invaded	Near	Absent	None	Isolated	None	High	*	None	735	0.25	{0.1, 0.9}
11080004cp003	0.052	term Short-	6.75	14.62	19.03	0.0198	None	Near	Near	Absent	None	Moderate	None	High	*	None	2039	0.25	$\{0.1, 0.9\}$
11080004cp004	0.048	term Short-	6.55	13.01	17.62	0.0207	None	Near	Near	Absent	None	Isolated	None	High	*	None	1971	0.25	{0.1, 0.9} {0.34,
13010001cp002	0.026	term Short-	7.17	10.43	14.89	0.0448	Partial	Invaded	Far	Far	None	Isolated	None	Moderate	*	None	107	0.25	0.66} {0.31,
13010002cp001	0.142	term Short-	25.29	10.17	13.9	0.0818	Complete	Invaded	Absent	Near	None	Moderate	Sporadic	Moderate	*	None	4133	0.25	0.69} {0.31,
13010002cp002	0.361	term Short-	7.63	13.09	17.03	0.0372	Partial	Far	Absent	Absent	None	Isolated	None	Moderate	Present	Yes	2868	0.25	0.69} {0.25,
13010002cp003	0.428	term Short-	3.5	9.85	14.37	0.0191	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	594	0.25	0.75}
13010002cp004	0.029	term Short-	10.36	14.06	20.99	0.045	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	80	0.25	{0.1, 0.9} {0.40,
13010002cp005	0.031	term Short-	6.67	12.91	19.31	0.0359	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1073	0.25	0.40, 0.60} {0.15,
13010002cp006	0.510	term Short-	6.06	10.59	13.66	0.0282	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	0.13, 0.85} {0.15,
13010002cp007	0.654	term Short-	9.25	10.34	14.37	0.0299	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2542	0.25	0.13, 0.85} {0.25,
13010002cp008	0.081	term Short-	6.23	13.49	16.91	0.0472	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	955	0.25	0.25, 0.75} {0.15,
13010002cp009	0.702	term Short-	13.23	12.88	15.99	0.0379	Complete	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	7682	0.25	0.13, 0.85} {0.15,
13010002cp010	0.038	term Short-	4.88	9.15	13.07	0.0357	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	764	0.25	0.13, 0.85} {0.15,
13010002cp011	0.031	term Short-	22.51	10.61	15.33	0.0537	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	593	0.25	0.13, 0.85} {0.15,
13010002cp012	0.020	term Short-	29.23	9.72	14.81	0.0828	None	Invaded	Absent	Far	None	Strong	None	High	*	None	641	0.25	0.15,
13010002cp014	0.044	term Short-	11.53	12.33	17.08	0.0649	Complete	Invaded	Absent	Far	None	Moderate	None	High	*	None	1779	0.25	{0.1, 0.9} {0.15,
13010002cp015	0.042	term Short-	17.09	13.84	18.67	0.1186	Complete	Invaded	Absent	Near	None	Isolated	None	High	*	None	4944	0.25	0.13, 0.85} {0.20,
13010002cp016	0.068	term Short-	37.96	15.87	20.55	0.1432	None	Invaded	Far	Infected	None	Moderate	Sporadic	Moderate	Present	Yes	15590	0.25	0.80}
13010002cp017	0.675	term Short-	2.69	10.33	12.7	0.0503	Complete	Near	Near	Absent	None	Isolated	None	Moderate	*	None	819	0.25	Minimal {0.20,
13010002cp018	0.112	term	5.47	13.79	16.34	0.05	None	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	1677	0.25	0.80}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010002cp019	0.126	Short- term Short-	3.34	14.82	18.22	0.0613	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	1025	0.25	{0.20, 0.80} {0.15,
13010002cp020	0.099	term Short-	0.75	10.77	14.09	0.0416	Partial	Invaded	Absent	Far	None	Isolated	Consistent	Moderate	*	None	80	0.25	0.85}
13010002cp021	0.674	term Short-	31.76	14.39	19.52	0.0643	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	9964	0.25	$\{0.1, 0.9\}$
13010002cp022	0.024	term Short-	5.56	9.15	13.95	0.0537	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	194	0.25	{0.1, 0.9}
13010002cp023	0.232	term Short-	3.71	8.7	12.97	0.0295	Complete	*	Absent	Absent	None	Isolated	None	High	*	None	946	0.25	{0.1, 0.9}
13010002cp024	0.674	term Short-	14.39	13.02	18.25	0.0292	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	5630	0.25	{0.1, 0.9} {0.3,
13010003cp001	0.734	term Short-	28.78	11.73	15.69	0.0689	Complete	Far	Absent	Absent	None	Strong	Consistent	High	*	None	15906	0.25	0.70}
13010004cp001	0.302	term Short-	4.25	8.29	13.8	0.0238	Complete	Near	Far	Absent	None	Isolated	None	Moderate	*	None	281	0.25	{0.1, 0.9} {0.31,
13010004cp002	0.621	term Short-	11.23	12.76	15.14	0.0422	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	785	0.25	0.69} {0.25,
13010004cp003	0.044	term Short-	31.36	13.3	16.7	0.0473	Complete	Invaded	Near	Near	None	Moderate	None	Moderate	*	None	11149	0.25	0.75}
13010004cp004	0.557	term Short-	4.91	10.42	15.04	0.0124	Complete	Near	Near	Far	None	Isolated	None	Moderate	*	None	912	0.25	{0.1, 0.9} {0.25,
13010004cp006	0.551	term Short-	4.07	14.51	17.78	0.0209	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	941	0.25	0.75} {0.31,
13010004cp007	0.634	term Short-	11.3	12.86	17.41	0.0424	Complete	Near	Absent	Absent	None	Isolated	None	Moderate	*	None	621	0.25	0.69} {0.35,
13010004cp010	0.146	term Short-	22.67	13.25	17.6	0.08	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	2472.5	0.25	0.65} {0.22,
13010004cp011	0.104	term Short-	12.97	10.85	15.49	0.022	Partial	Invaded	Invaded	Absent	None	Moderate	Sporadic	Moderate	*	None	2025	0.25	0.78} {0.25,
13010004cp012	0.097	term Short-	10.17	12.55	16.01	0.0325	None	Invaded	Invaded	Absent	None	Isolated	Sporadic	High	*	None	1570	0.25	0.75}
13010005cp001	0.042	term Short-	7.64	14.33	20.81	0.0264	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1196	0.25	{0.1, 0.9}
13010005cp002	0.063	short-	4.47	16.09	22.71	0.0523	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	713	0.25	{0.1, 0.9}
13010005cp003	0.366	short-	2.95	13.48	20.38	0.0257	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	462	0.25	{0.1, 0.9} {0.20,
13010005cp004	0.018	Short-	5.06	13.75	21	0.0249	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	801	0.25	0.80} {0.20,
13010005cp006	0.519	Short-	5.9	13	18.65	0.0286	Complete	Far	Absent	Absent	None	Isolated	None	High		None	2007	0.25	0.80}
13010005cp007	0.326	Short-	1.01	12.45	18.19	0.0267	Complete	Near	Near	Near	None	Isolated	None	High	*	None	217	0.25	{0.1, 0.9} {0.25,
13010005cp008	0.634	short-	3.97	14	19.96	0.0391	Complete	Near	Near	Near	None	Isolated	Consistent	High	*	None	1466	0.25	0.75}
13010005cp009	0.175	term	0.87	8.74	15.07	0.0287	Complete	Near	Near	Absent	None	Isolated	None	High	**	None	138	0.25	{0.1, 0.9}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010005cp010	0.510	Short- term Short-	4.69	12.92	18.56	0.0255	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1499	0.25	{0.20, 0.80}
13020101cp001	0.786	term Short-	14.57	10.25	18.16	0.0316	Complete	Far	Far	Absent	None	Strong	None	High	*	None	2079	0.25	Minimal
13020101cp002	0.786	term Short-	15.19	12.17	20.44	0.0564	Complete	Near	Near	Absent	None	Strong	Sporadic	High	*	None	6350	0.25	Minimal
13020101cp003	0.510	term Short-	6.2	10.37	15.7	0.0208	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	1175	0.25	{0.1, 0.9}
13020101cp004	0.049	term Short-	2.09	12.59	17.84	0.0291	None	Invaded	Near	Absent	None	Isolated	Sporadic	High	*	None	327	0.25	{0.1, 0.9}
13020101cp005	0.048	term Short-	5.09	11.74	16.42	0.0213	None	Near	Near	Absent	None	Isolated	None	High	*	None	1603	0.25	{0.1, 0.9} {0.20,
13020101cp006	0.659	term Short-	43.42	14.2	20.7	0.0352	Complete	Near	Near	Absent	None	Strong	None	High	Present	Yes	13688	0.25	0.80} {0.20,
13020101cp007	0.021	term Short-	4.42	13.57	19.77	0.0196	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	688	0.25	0.80} {0.20,
13020101cp008	0.307	term Short-	13.82	11.83	17.23	0.0369	None	Far	Near	Absent	None	Moderate	None	High	*	None	4204	0.25	0.80} {0.20,
13020101cp009	0.019	term Short-	13.72	11.01	16.85	0.0268	None	Invaded	Near	Far	None	Moderate	None	High	*	None	2126	0.25	0.80} {0.3,
13020101cp010	0.201	term Short-	2.85	10.23	14.86	0.0233	Partial	Far	Near	Far	None	Isolated	None	High	*	None	878	0.25	0.70}
13020101cp011	0.012	term Short-	17.85	9.25	12.36	0.0275	Complete	Invaded	Far	Infected	None	Strong	None	High	*	None	3357	0.25	Minimal
13020101cp012	0.230	term Short-	6.46	9.6	12.14	0.0214	None	Far	Far	Far	None	Isolated	None	High	*	None	1966	0.25	Minimal
13020101cp013	0.037	Short-	4.74	12.4	15.75	0.0183	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	765	0.25	Minimal
13020101cp015	0.637	Short-	3.85 3.37	11.61	15.22	0.0178	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	Minimal
13020101cp016	0.029	Short-	6.26	11.06 11.68	13.85 15	0.0202 0.0242	None None	Invaded Invaded	Absent Absent	Absent Absent	None None	Isolated Isolated	None None	High High	*	None None	549 994	0.25	Minimal Minimal
13020101cp017 13020101cp018	0.030	term Short- term	3.19	13.01	17.69	0.0242	None	Invaded	Far	Absent	None	Isolated	None		*	None	513	0.25	{0.20, 0.80}
13020101cp018	0.018	Short- term	4.96	9.13	14.71	0.0174	Partial	Invaded	Far	Absent	None	Isolated	None	High High	*	None	694	0.25	{0.20, 0.80}
13020101cp019	0.024	Short- term	3.94	10.17	15.3	0.0174	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	632	0.25	Minimal
13020101cp020	0.030	Short- term	4.27	8.88	13.53	0.0171	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	674	0.25	{0.40, 0.60}
13020101cp021	0.030	Short- term	14.84	10.46	15.9	0.0269	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	2352	0.25	{0.20, 0.80}
13020101cp022	0.510	Short- term	4.85	10.40	15.71	0.0209	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1335	0.25	{0.1, 0.9}
13020101cp023	0.729	Short- term	8.77	12.88	16.64	0.0207	•	Near	Absent	Absent	None	Isolated	None	High	*	None	2793		Minimal
13020101cp024	0.12)	101111	0.77	12.00	10.04	0.0239	Complete	11001	2 105CIII	1 103CIII	Tione	15014104	110110	111511		110110	2173	0.23	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020101cp025	0.645	Short- term Short-	6.4	9.27	14.48	0.0284	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2016	0.25	Minimal
13020101cp026	0.736	term Short-	9.57	10.22	16.06	0.0251	Complete	Near	Absent	Absent	None	Moderate	None	High	*	None	4434	0.25	Minimal
13020101cp027	0.053	term Short-	7	9.03	12.2	0.0219	Complete	Invaded	Far	Absent	None	Moderate	None	High	*	None	405	0.25	Minimal
13020101cp028	0.019	term Short-	4.1	8.04	12.63	0.0251	Partial	Invaded	Far	Absent	None	Isolated	None	High	*	None	655	0.25	Minimal
13020101cp029	0.050	term Short-	14.5	9.2	13.77	0.0372	None	Invaded	Far	Absent	None	Moderate	None	High	*	None	2344	0.25	Minimal
13020101cp030	0.087	term Short-	8.22	10.65	11.27	0.0209	None	Near	Near	Absent	None	Isolated	None	High	*	None	2588	0.25	Minimal
13020101cp031	0.116	Short-	5.78	8.64	12.16	0.0171	Partial	Near	Near	Absent	None	Isolated	None	High	*	None	1852	0.25	Minimal {0.20,
13020101cp032	0.280	Short-	17.18	12.11	16.34	0.027	*	Near	Near	Absent	None	Moderate	None	High	*	None	5268	0.25	0.80}
13020101cp034 13020101cp035	0.030 0.116	Short-	16.81 4.08	10.81 8.74	14.72 12.43	0.027 0.0203	None Partial	Invaded Near	Absent Near	Absent Absent	None None	Moderate Isolated	None None	High	*	None None	2623 1239	0.25	{0.1, 0.9} Minimal
13020101cp035	0.576	term Short- term	2.8	10.56	14.52	0.0203	Complete	Near	Near	Absent	None	Isolated	None	High High	*	None	845	0.25	Minimal
13020101cp037	0.050	Short- term	13.13	9.99	13.63	0.0308	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	2071	0.25	Minimal
13020101cp038	0.044	Short- term	12.55	9.78	13.26	0.0286	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	1984	0.25	Minimal
13020101cp040	0.637	Short- term	5.6	11.26	14.63	0.0188	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	1795	0.25	Minimal
13020101cp041	0.736	Short- term	7.25	9.65	16.03	0.0283	Complete	Near	Near	Absent	None	Moderate	None	High	*	None	2272	0.25	
13020101cp042	0.021	Short- term	4.21	12.68	18.4	0.0166	None	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	662	0.25	{0.20, 0.80}
13020101cp043	0.635	Short- term Short-	3.62	11.25	17.12	0.0206	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1129	0.25	Minimal
13020101cp044	0.622	term Short-	4.15	10.45	16.61	0.0252	Complete	Far	Far	Far	None	Moderate	None	High	*	None	742	0.25	Minimal
13020101cp045	0.575	term Short-	3.39	11.09	17.34	0.0234	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1057	0.25	Minimal
13020102cp001	0.707	term Short-	5.87	14.55	18.59	0.0333	Complete	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	2172	0.25	Minimal
13020102cp002	0.397	term Short-	3.66	13.59	18.19	0.0335	Complete	*	Invaded	Absent	None	Isolated	None	High	*	None	1155	0.25	{0.1, 0.9
13020102cp003	0.033	term Short-	3.94	12.65	17.57	0.0289	Complete	Invaded	*	Absent	None	Isolated	None	High	*	None	626	0.25	{0.1, 0.9 {0.20,
13020102cp004	0.059	term Short-	7.96	12.69	18.19	0.029	None	Near	Far	Absent	None	Isolated	None	High	*	None	2446	0.25	0.80} {0.3,
13020102cp005	0.270	term	8.08	12.68	18.65	0.0221	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2596	0.25	0.70}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020102cp006	0.610	Short- term Short-	12.75	13.5	19.47	0.0258	Complete	Far	Absent	Absent	None	Moderate	None	High	*	None	2172	0.25	{0.1, 0.9} {0.20,
13020102cp007	0.296	term Short-	5.31	16.35	22.59	0.0639	None	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	1714	0.25	0.80}
13020102cp008	0.655	term Short-	10.71	15.52	20.75	0.0592	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	3381	0.25	{0.1, 0.9} {0.3,
13020102cp009	0.655	term Short-	13.07	14.1	19.51	0.0431	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	2600	0.25	0.70}
13020102cp010	0.219	term Short-	12.45	15.46	20.74	0.0408	None	Far	Absent	Far	None	Isolated	None	High	*	None	3866	0.25	{0.1, 0.9} {0.25,
13020102cp011	0.023	term Short-	0.61	12.66	17.23	0.0373	Complete	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	92	0.25	0.75}
13020102cp012	0.666	term Short-	3.71	12.15	16.85	0.0273	Complete	Near	Far	Absent	None	Moderate	None	High	*	None	1167	0.25	Minimal {0.20,
13020102cp016	0.221	term Short-	10.74	14.64	19.58	0.0432	None	Far	Far	Far	None	Moderate	None	High	*	None	3473	0.25	0.80}
13020201cp001	0.393	term Short-	11.97	18.07	22.01	0.0412	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2436	0.25	Minimal
13020201cp002	0.243	term Short-	0.7	15.74	20.65	0.0226	None	Far	Absent	Absent	None	Isolated	None	Moderate	*	None	218	0.25	Minimal {0.20,
13020202cp001	0.502	term Short-	6.71	15.41	19.45	0.0454	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	3254	0.25	0.80}
13020202cp002	0.041	term Short-	6.87	13.14	20.01	0.0219	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1120	0.25	Minimal
13020202cp003	0.043	term Short-	19.95	11.47	16.88	0.0284	Complete	Invaded	Absent	Absent	None	Moderate	None	High	*	None	3241	0.25	{0.1, 0.9}
13020204cp001	0.048	term Short-	4.36	12.86	15.58	0.0265	None	Near	Absent	Absent	None	Isolated	None	High	*	None	1341	0.25	{0.1, 0.9}
13020204cp002	0.036	term Short-	2.32	11.42	14.2	0.0154	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	361	0.25	Minimal
13020204cp003	0.060	term Short-	14.39	11.04	15.28	0.0221	None	Near	Absent	Absent	None	Moderate	None	High	*	None	4492	0.25	{0.1, 0.9}
13060001cp001	0.016	term Short-	2.43	8.88	13.5	0.0218	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	397	0.25	Minimal
13060001cp002	0.026	term Short-	3.23	9.66	13.91	0.0157	Partial	Invaded	Far	Far	None	Isolated	None	High	*	None	528	0.25	Minimal
13060001cp003	0.025	term Short-	3.66	8.38	13.07	0.0166	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	594	0.25	Minimal
13060001cp004	0.051	term Short-	6.33	9.57	16.24	0.0205	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	1013	0.25	Minimal
13060001cp005	0.059	term Short-	9.94	9.24	13.7	0.0247	Complete	Invaded	Far	Far	None	Moderate	None	High	*	None	1620	0.25	Minimal
13060001cp006	0.014	term Short-	2.48	10.44	13.94	0.0164	None	Invaded	Far	Far	None	Isolated	None	High	*	None	375	0.25	Minimal
13060001cp007	0.055	term Short-	11.34	11.21	14.57	0.0276	Complete	Invaded	Far	Near	None	Isolated	None	High	*	None	1850	0.25	Minimal
13060001cp008	0.023	term	2.71	9.25	12.15	0.0156	*	Invaded	Far	Far	None	Isolated	None	High	*	None	418	0.25	Minimal

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13060001cp009	0.693	Short- term Short-	4.46	15.2	17.6	0.0471	Complete	Near	Far	Near	None	Isolated	None	High	*	None	1077	0.25	Minimal
13060001cp010	0.641	term Short-	6.74	13.94	16.77	0.0208	Complete	Near	Far	Near	None	Isolated	None	High	*	None	2122	0.25	Minimal
13060001cp011	0.635	term Short-	5.64	10.57	13.95	0.0226	Complete	Near	Far	Far	None	Isolated	None	High	*	None	1772	0.25	Minimal
13060005cp001	0.200	term Long-	3.85	21.1	24.4	0.0352	Complete	Far	Far	Absent	None	Isolated	None	High	*	None	815	0.25	Minimal
11080001cp001	0.029	term Long-	69.33	16.03	21.31	0.2453	None	Invaded	Invaded	Far	None	Strong	Sporadic	High	*	None	10966	0.25	Minimal
11080001cp002	0.000	term Long-	11.94	13.69	19.52	0.0503	Complete	Invaded	Absent	Far	None	Isolated	None	High	*	None	1925	0.25	Minimal
11080001cp003	0.473	term Long-	3.08	11.42	16.71	0.0248	Complete	Invaded	Near	Absent	Annual	Isolated	None	High	*	None	708	0.25	Minimal {0.40,
11080002cp001	0.004	term Long-	15.22	15.3	20.45	0.0461	None	Near	Far	Near	None	Isolated	None	High	Present	Yes	4718	0.25	0.60}
11080002cp002	0.512	term Long-	15.18 9.6	16.97	22.06	0.0383	Complete	Near	Far	Near	None None	Isolated Isolated	None	High	*	None None	4579 1676	0.25	{0.1, 0.9 Minimal
11080002cp003 11080002cp005	0.697 0.714	term Long- term	7.51	12.87 16.05	18.7 21.54	0.0373 0.0292	Complete Complete	Near Near	Near Far	Near Near	None	Moderate	None None	High High	*	None	2388	0.25	Minimal
11080004cp001	0.030	Long- term	6.77	13.12	18.31	0.0326	•	Invaded	Near	Absent	None	Isolated	Sporadic	High	Present	Yes	1108	0.25	{0.20, 0.80}
11080004cp002	0.000	Long- term	4.56	13.22	18.42	0.0334	Partial	Invaded	Near	Absent	None	Isolated	None	High	*	None	735	0.25	{0.1, 0.9
11080004cp003	0.011	Long- term	6.75	15.2	19.32	0.0289	None	Near	Near	Absent	None	Moderate	None	High	*	None	2039	0.25	{0.1, 0.9
11080004cp004	0.012	Long- term	6.55	13.58	17.92	0.0302	None	Near	Near	Absent	None	Isolated	None	High	*	None	1971	0.25	{0.1, 0.9
13010001cp002	0.000	Long- term	7.17	11.13	15.26	0.0346	Partial	Invaded	Far	Far	None	Isolated	None	Moderate	*	None	107	0.25	{0.34, 0.66}
13010002cp001	0.066	Long- term	25.29	11.03	14.44	0.0608	Complete	Invaded	Absent	Near	None	Moderate	Sporadic	Moderate	*	None	4133	0.25	{0.31, 0.69} {0.31,
13010002cp002	0.092	Long- term Long-	7.63	13.95	17.57	0.0284	Partial	Far	Absent	Absent	None	Isolated	None	Moderate	Present	Yes	2868	0.25	0.69} {0.25,
13010002cp003	0.380	term Long-	3.5	10.71	14.91	0.0148	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	594	0.25	0.75}
13010002cp004	0.000	term Long-	9.56	14.7	21.1	0.0339	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	80	0.25	{0.1, 0.9 {0.40,
13010002cp005	0.000	term Long-	6.67	13.77	19.85	0.0271	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1073	0.25	0.60} {0.15,
13010002cp006	0.466	term Long-	6.06	11.17	13.94	0.0289	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	0.85} {0.15,
13010002cp007	0.632	term Long-	9.25	10.92	14.65	0.0303	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2542	0.25	0.85} {0.25,
13010002cp008	0.031	term	6.23	14.07	17.2	0.0485	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	955	0.25	0.75}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010002cp009	0.682	Long- term Long-	13.23	13.45	16.27	0.0387	Complete	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	7682	0.25	{0.15, 0.85} {0.15,
13010002cp010	0.000	term Long-	4.88	9.72	13.35	0.0357	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	764	0.25	0.15, 0.85} {0.15,
13010002cp011	0.000	term Long-	22.51	11.19	15.63	0.0537	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	593	0.25	0.85} {0.15,
13010002cp012	0.000	term Long-	29.23	10.39	15.15	0.0725	None	Invaded	Absent	Far	None	Strong	None	High	*	None	641	0.25	0.85}
13010002cp014	0.000	term Long-	11.53	13	17.42	0.0568	Complete	Invaded	Absent	Far	None	Moderate	None	High	*	None	1779	0.25	{0.1, 0.9} {0.15,
13010002cp015	0.000	term Long-	17.09 37.96	14.51 16.54	19.01 20.89	0.1038 0.1253	Complete None	Invaded	Absent	Near	None	Isolated	None	High	* Present	None Yes	4944 15590	0.25	0.85} {0.20, 0.80}
13010002cp016 13010002cp017	0.640	term Long- term	2.69	11.06	13.04	0.1253	Complete	Invaded Near	Far Near	Infected Absent	None None	Moderate Isolated	Sporadic None	Moderate Moderate	*	None	15590	0.25	0.80} Minimal
13010002cp018	0.044	Long- term	5.47	14.36	16.62	0.049	None	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	1677	0.25	{0.20, 0.80}
13010002cp019	0.052	Long- term	3.34	15.4	18.5	0.063	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	1025	0.25	{0.20, 0.80}
13010002cp020	0.044	Long- term	0.75	11.34	14.37	0.0416	Partial	Invaded	Absent	Far	None	Isolated	Consistent	Moderate	*	None	80	0.25	{0.15, 0.85}
13010002cp021	0.620	Long- term Long-	31.76	15.06	19.86	0.0641	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	9964	0.25	{0.1, 0.9}
13010002cp022	0.000	term Long-	5.56	9.73	14.26	0.047	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	194	0.25	{0.1, 0.9}
13010002cp023	0.311	term Long-	3.71	9.33	13.28	0.0259	Complete	*	Absent	Absent	None	Isolated	None	High	*	None	946	0.25	{0.1, 0.9}
13010002cp024	0.620	term Long-	14.39	13.69	18.59	0.0336	Complete	Near	Absent	Near	None	Strong	None	Moderate	*	None	5630	0.25	{0.1, 0.9} {0.3,
13010003cp001 13010004cp001	0.714 0.477	term Long- term	28.78 4.25	12.4 9.06	16.03 14.17	0.0847 0.0238	Complete Complete	Far Near	Absent Far	Absent Absent	None None	Strong Isolated	Consistent None	High Moderate	*	None None	15906 281	0.25	0.70}
13010004cp001	0.546	Long- term	11.23	13.47	15.52	0.0422	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	785	0.25	{0.1, 0.5} {0.31, 0.69}
13010004cp003	0.000	Long- term	31.36	14.01	17.07	0.0473	Complete	Invaded	Near	Near	None	Moderate	None	Moderate	*	None	11149	0.25	{0.25, 0.75}
13010004cp004	0.514	Long- term	4.91	11.13	15.42	0.0212	Complete	Near	Near	Far	None	Isolated	None	Moderate	*	None	912	0.25	{0.1, 0.9}
13010004cp006	0.486	Long- term	4.07	15.27	18.05	0.0209	Complete	Near	Absent	Near	None	Isolated	None	Moderate	*	None	941	0.25	{0.25, 0.75}
13010004cp007	0.588	Long- term Long-	11.3	13.56	17.78	0.0424	Complete	Near	Absent	Absent	None	Isolated	None	Moderate	*	None	621	0.25	{0.31, 0.69} {0.35,
13010004cp010	0.065	term Long-	22.67	13.95	17.98	0.08	None	Near	Absent	Absent	None	Isolated	Sporadic	Moderate	*	None	2472.5	0.25	0.65} {0.22,
13010004cp011	0.044	term	12.97	11.55	15.87	0.022	Partial	Invaded	Invaded	Absent	None	Moderate	Sporadic	Moderate	*	None	2025	0.25	0.78}

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13010004cp012	0.039	Long- term Long-	10.17	13.25	16.39	0.0325	None	Invaded	Invaded	Absent	None	Isolated	Sporadic	High	*	None	1570	0.25	{0.25, 0.75}
13010005cp001	0.000	term Long-	7.64	14.97	21.18	0.0199	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1196	0.25	{0.1, 0.9}
13010005cp002	0.014	term Long-	4.47	16.74	23.08	0.0395	None	Invaded	Absent	Absent	None	Isolated	Sporadic	High	*	None	713	0.25	{0.1, 0.9}
13010005cp003	0.319	term Long-	2.95	14.12	20.75	0.0194	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	462	0.25	{0.1, 0.9} {0.20,
13010005cp004	0.000	term Long-	5.06	14.39	21.37	0.0188	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	801	0.25	0.80} {0.20,
13010005cp006	0.490	term Long-	5.9	13.8	19.17	0.0216	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	2007	0.25	0.80}
13010005cp007	0.270	term Long-	1.01	13.31	18.73	0.0206	Complete	Near	Near	Near	None	Isolated	None	High	*	None	217	0.25	{0.1, 0.9} {0.25,
13010005cp008	0.581	term Long-	3.97	14.86	20.5	0.03	Complete	Near	Near	Near	None	Isolated	Consistent	High	*	None	1466	0.25	0.75}
13010005cp009	0.270	term Long-	0.87	9.54	15.59	0.0217 0.0193	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	138	0.25	{0.1, 0.9} {0.20,
13010005cp010 13020101cp001	0.466 0.767	term Long-	4.69 14.57	13.71 10.82	19.08 18.44	0.0193	Complete	Near Far	Absent Far	Absent Absent	None None	Isolated	None	High High	*	None None	1499 2079	0.25	0.80} Minimal
13020101cp001	0.767	term Long- term	15.19	12.75	20.72	0.0510	Complete Complete	Near	Near	Absent	None	Strong	None Sporadic	High	*	None	6350	0.25	Minimal
13020101cp002	0.466	Long- term	6.2	10.96	16.02	0.02	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	1175	0.25	{0.1, 0.9}
13020101cp004	0.014	Long- term	2.09	13.16	18.12	0.0279	None	Invaded	Near	Absent	None	Isolated	Sporadic	High	*	None	327	0.25	{0.1, 0.9}
13020101cp005	0.010	Long- term	5.09	12.34	16.74	0.0204	None	Near	Near	Absent	None	Isolated	None	High	*	None	1603	0.25	{0.1, 0.9}
13020101cp006	0.559	Long- term	43.42	14.8	21	0.0318	Complete	Near	Near	Absent	None	Strong	None	High	Present	Yes	13688	0.25	{0.20, 0.80}
13020101cp007	0.000	Long- term	4.42	14.19	20.14	0.0188	None	Invaded	Near	Absent	None	Isolated	None	High	*	None	688	0.25	{0.20, 0.80}
13020101cp008	0.050	Long- term	13.82	12.41	17.51	0.0354	None	Far	Near	Absent	None	Moderate	None	High	*	None	4204	0.25	{0.20, 0.80}
13020101cp009	0.000	Long- term	13.72	11.63	17.22	0.0311	None	Invaded	Near	Far	None	Moderate	None	High	*	None	2126	0.25	{0.20, 0.80} {0.3,
13020101cp010	0.052	Long- term Long-	2.85	10.85	15.23	0.0223	Partial	Far	Near	Far	None	Isolated	None	High	*	None	878	0.25	0.70}
13020101cp011	0.000	term Long-	17.85	9.87	12.73	0.0402	Complete	Invaded	Far	Infected	None	Strong	None	High	*	None	3357	0.25	Minimal
13020101cp012	0.035	term Long-	6.46	10.23	12.51	0.0313	None	Far	Far	Far	None	Isolated	None	High	*	None	1966	0.25	Minimal
13020101cp013	0.000	term Long-	4.74	13.02	16.12	0.0267	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	765	0.25	Minimal
13020101cp015	0.588	term	3.85	12.24	15.59	0.026	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1213	0.25	Minimal

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020101cp016	0.000	Long- term Long-	3.37	11.69	14.22	0.0295	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	549	0.25	Minimal
13020101cp017	0.000	term Long-	6.26	12.3	15.36	0.0354	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	994	0.25	Minimal {0.20,
13020101cp018	0.000	term Long-	3.19	13.61	18.02	0.0291	None	Invaded	Far	Absent	None	Isolated	None	High	*	None	513	0.25	0.80} {0.20,
13020101cp019	0.000	term Long-	4.96	9.73	15.05	0.0254	Partial	Invaded	Far	Absent	None	Isolated	None	High	*	None	694	0.25	0.80}
13020101cp020	0.000	term Long-	3.94	10.77	15.63	0.0249	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	632	0.25	Minimal {0.40,
13020101cp021	0.000	term Long-	4.27	9.48	13.86	0.0302	None	Invaded	Absent	Absent	None	Isolated	None	High	*	None	674	0.25	0.60} {0.20,
13020101cp022	0.000	term Long-	14.84	11.06	16.23	0.0392	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	2352	0.25	0.80}
13020101cp023	0.531	term Long-	4.85	11.17	16.04	0.0302	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	1335	0.25	{0.1, 0.9}
13020101cp024	0.756	term Long-	8.77	13.48 9.87	16.98 14.82	0.0378 0.0414	Complete	Near	Absent	Absent	None	Isolated	None	High	*	None	2793	0.25	Minimal Minimal
13020101cp025 13020101cp026	0.679 0.761	term Long-	6.4 9.57	10.82	16.4	0.0414	Complete	Near	Absent Absent	Absent	None	Isolated Moderate	None None	High	*	None None	2016 4434	0.25	Minimal
13020101cp020	0.000	term Long- term	9.37 7	9.67	12.53	0.0307	Complete Complete	Near Invaded	Far	Absent Absent	None None	Moderate	None	High High	*	None	405	0.25	Minimal
13020101cp027	0.000	Long- term	4.1	8.64	12.96	0.032	Partial	Invaded	Far	Absent	None	Isolated	None	High	*	None	655	0.25	Minimal
13020101cp029	0.000	Long- term	14.5	9.8	14.1	0.0543	None	Invaded	Far	Absent	None	Moderate	None	High	*	None	2344	0.25	Minimal
13020101cp030	0.021	Long- term	8.22	11.3	11.6	0.0305	None	Near	Near	Absent	None	Isolated	None	High	*	None	2588	0.25	Minimal
13020101cp031	0.086	Long- term	5.78	9.24	12.49	0.0249	Partial	Near	Near	Absent	None	Isolated	None	High	*	None	1852	0.25	Minimal
13020101cp032	0.248	Long- term	17.18	12.71	16.68	0.0394	*	Near	Near	Absent	None	Moderate	None	High	*	None	5268	0.25	{0.20, 0.80}
13020101cp034	0.000	Long- term	16.81	11.4	15.04	0.0394	None	Invaded	Absent	Absent	None	Moderate	None	High	*	None	2623	0.25	{0.1, 0.9}
13020101cp035	0.099	Long- term	4.08	9.34	12.77	0.0296	Partial	Near	Near	Absent	None	Isolated	None	High	*	None	1239	0.25	Minimal
13020101cp036	0.535	Long- term	2.8	11.16	14.86	0.0245	Complete	Near	Near	Absent	None	Isolated	None	High	*	None	845	0.25	Minimal
13020101cp037	0.000	Long- term Long-	13.13	10.56	13.92	0.045	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	2071	0.25	Minimal
13020101cp038	0.000	term Long-	12.55	10.35	13.55	0.0418	None	Invaded	Invaded	Absent	None	Moderate	None	High	*	None	1984	0.25	Minimal
13020101cp040	0.589	term Long-	5.6	11.83	14.92	0.0274	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	1795	0.25	Minimal
13020101cp041	0.700	term	7.25	10.22	16.31	0.0286	Complete	Near	Near	Absent	None	Moderate	None	High	*	None	2272	0.25	Minimal

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020101cp042	0.000	Long- term Long-	4.21	13.31	18.77	0.0159	None	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	662	0.25	{0.20, 0.80}
13020101cp043	0.585	term Long-	3.62	11.83	17.39	0.0208	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1129	0.25	Minimal
13020101cp044	0.557	term Long-	4.15	11.03	16.89	0.0251	Complete	Far	Far	Far	None	Moderate	None	High	*	None	742	0.25	Minimal
13020101cp045	0.533	term Long-	3.39	11.67	17.61	0.024	Complete	Far	Far	Far	None	Isolated	None	High	*	None	1057	0.25	Minimal
13020102cp001	0.612	term Long-	5.87	15.06	18.98	0.0251	Complete	Near	Absent	Absent	None	Isolated	Sporadic	High	*	None	2172	0.25	Minimal
13020102cp002	0.311	term Long-	3.66	14.39	18.71	0.0253	Complete	*	Invaded	Absent	None	Isolated	None	High	*	None	1155	0.25	{0.1, 0.9}
13020102cp003	0.000	term Long-	3.94	13.44	18.09	0.0219	Complete	Invaded	*	Absent	None	Isolated	None	High	*	None	626	0.25	{0.1, 0.9} {0.20,
13020102cp004	0.013	term Long-	7.96	13.34	18.56	0.0283	None	Near	Far	Absent	None	Isolated	None	High	*	None	2446	0.25	0.80} {0.3,
13020102cp005	0.049	term Long-	8.08	13.31	19.02	0.0323	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2596	0.25	0.70}
13020102cp006	0.640	term Long-	12.75	14.13	19.84	0.0377	Complete	Far	Absent	Absent	None	Moderate	None	High	*	None	2172	0.25	{0.1, 0.9} {0.20,
13020102cp007	0.065	term Long-	5.31	16.98	22.95	0.0932	None	Far	Absent	Absent	None	Isolated	Sporadic	High	*	None	1714	0.25	0.80}
13020102cp008	0.559	term Long-	10.71	16.14	21.12	0.0863	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	3381	0.25	{0.1, 0.9} {0.3,
13020102cp009	0.635	term Long-	13.07	14.72	19.87	0.0628	Complete	Far	Absent	Absent	None	Isolated	None	High	*	None	2600	0.25	0.70}
13020102cp010	0.025	term Long-	12.45	16.08	21.1	0.0595	None	Far	Absent	Far	None	Isolated	None	High	*	None	3866	0.25	{0.1, 0.9} {0.25,
13020102cp011	0.000	term Long-	0.61	13.45	17.75	0.0281	Complete	Invaded	Invaded	Absent	None	Isolated	None	High	*	None	92	0.25	0.75}
13020102cp012	0.615	term Long-	3.71	12.94	17.37	0.0206	Complete	Near	Far	Absent	None	Moderate	None	High	*	None	1167	0.25	Minimal {0.20,
13020102cp016	0.031	term Long-	10.74	15.26	19.95	0.063	None	Far	Far	Far	None	Moderate	None	High	*	None	3473	0.25	0.80}
13020201cp001	0.063	term Long-	11.97	18.7	22.37	0.0602	None	Far	Absent	Absent	None	Isolated	None	High	*	None	2436	0.25	Minimal
13020201cp002	0.039	term Long-	0.7	16.37	21.01	0.0329	None	Far	Absent	Absent	None	Isolated	None	Moderate	*	None	218	0.25	Minimal {0.20,
13020202cp001	0.472	term Long-	6.71	15.67	19.72	0.0663	Complete	Invaded	Absent	Absent	Annual	Isolated	None	High	*	None	3254	0.25	0.80}
13020202cp002	0.000	term Long-	6.87	13.4	20.29	0.032	Partial	Invaded	Absent	Absent	None	Isolated	None	High	*	None	1120	0.25	Minimal
13020202cp003	0.000	term Long-	19.95	11.73	17.16	0.0415	Complete	Invaded	Absent	Absent	None	Moderate	None	High	*	None	3241	0.25	{0.1, 0.9}
13020204cp001	0.012	term Long-	4.36	13.12	15.86	0.0386	None	Near	Absent	Absent	None	Isolated	None	High	*	None	1341	0.25	{0.1, 0.9}
13020204cp002	0.000	term	2.32	11.68	14.48	0.0224	Complete	Invaded	Absent	Absent	None	Isolated	None	High	*	None	361	0.25	Minimal

ConPopID	Prob Persist	Time Period	PatchSize	M30AT	MWMT	Baseflow Discharge	Barrier	ProxCom pPop	Prox Hyrbids	ProxWD Source	Nonnative Control	PopCon- nectivity	Dem Support	Wildfire DebrisRisk	Drought Refugia	Intermit- tency Evid	Adult PopEst	NeN	Anthro Influence
13020204cp003	0.015	Long- term Long-	14.39	11.3	15.55	0.0323	None	Near	Absent	Absent	None	Moderate	None	High	*	None	4492	0.25	{0.1, 0.9}
13060001cp001	0.000	term Long-	2.43	9.46	13.79	0.0318	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	397	0.25	Minimal
13060001cp002	0.000	term Long-	3.23	10.24	14.2	0.0229	Partial	Invaded	Far	Far	None	Isolated	None	High	*	None	528	0.25	Minimal
13060001cp003	0.000	term Long-	3.66	8.95	13.37	0.0242	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	594	0.25	Minimal
13060001cp004	0.000	term	6.33	10.14	16.53	0.03	Complete	Invaded	Far	Far	None	Isolated	None	High	*	None	1013	0.25	Minimal
13060001cp005	0.000	Long- term	9.94	9.81	14	0.036	Complete	Invaded	Far	Far	None	Moderate	None	High	*	None	1620	0.25	Minimal
13060001cp006	0.000	Long- term	2.48	11.01	14.23	0.0239	None	Invaded	Far	Far	None	Isolated	None	High	*	None	375	0.25	Minimal
13060001cp007	0.000	Long- term	11.34	11.79	14.86	0.0403	Complete	Invaded	Far	Near	None	Isolated	None	High	*	None	1850	0.25	Minimal
13060001cp008	0.000	Long- term	2.71	9.82	12.45	0.0228	*	Invaded	Far	Far	None	Isolated	None	High	*	None	418	0.25	Minimal
13060001cp009	0.625	Long- term	4.46	15.77	17.89	0.0687	Complete	Near	Far	Near	None	Isolated	None	High	*	None	1077	0.25	Minimal
13060001cp010	0.652	Long- term	6.74	14.51	17.06	0.0304	Complete	Near	Far	Near	None	Isolated	None	High	*	None	2122	0.25	Minimal
13060001cp011	0.647	Long- term	5.64	11.14	14.24	0.0329	Complete	Near	Far	Far	None	Isolated	None	High	*	None	1772	0.25	Minimal
13060005cp001	0.126	Long- term	1.3	21.1	24.2	0.0318	Complete	Far	Far	Absent	None	Isolated	None	High	*	None	815	0.25	Minimal

Appendix D. Progress toward 10 year goals (2014-2024) identified in the Rio Grande Cutthroat Trout Conservation Strategy.

				GMU		
Cor	nservation Actions	Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo
Obj	ective 1: Identify and characterize a	II RGCT Core and Conse	rvation Populations and	d Occupied Habitat.		
1.1	Population Monitoring	Monitor 10 populations/year	Monitor 10 populations	Monitor 8 populations	Monitor 5 populations	Monitor one population every couple of years
	Progress toward Conservation Strategy Goals	Completed: Monitored an average 11.5 populations/year.	Completed: Monitored 16 populations.	_	In Progress: Monitored 3 populations.	In Progress: Monitoring will occur in Las Animas Creek after stocking efforts are completed.
1.2	Genetic Analysis	Collect genetic specimens as necessary to determine purity of populations				
	Progress toward Conservation Strategy Goals	Completed: Determined genetic purity in 16 populations.	Completed: Determined genetic purity in 15 populations.	Completed: Determined genetic purity in 1 population.	Completed: Determined genetic purity in 1 population.	Completed: Determined genetic purity of translocated fish during restoration.

		GMU							
Conservation Actions		Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo			
Obj	Objective 2: Secure and enhance conservation populations.								
2.1	Restricting introduction of nonnative fish species	CPW Regulations	CPW Regulations: Chapter 0, Article VII, #013 Release of Aquatic Wildlife; Appendix C Cutthroat Trout Waters NMAC 19.35.7: Importation of live non-domestic animals, birds, and fish						
2.2	Restricting spread of disease and invasive species		Colorado Parks and Wildlife Commission Police D-9; CPW Regulations: Chapter 0, Article VII, #014 NMAC 19.30.14: Providing for the control and prevention of the spread of aquatic invasive species in New Mexico						
2.3	Removing nonnative fish species	Conduct non-native trout removals as necessary.	Conduct nonnative fish removals on an annual or biannual basis						
	Progress toward Conservation		Completed: Non-native		Completed: Non-native				
	Strategy Goals		removals occurred in three populations.		removals occurred in three populations.				
2.4	Regulating angling and enforcement	_	CPW Regulations: Chapter 1, Article II, #108 Special Regulation Waters NMAC 19.31.4.11: Daily bag, possession limits, and requirements or conditions						
2.5	Constructing in-channel barriers	Improve or install barriers to facilitate possible restoration projects	Improve or install barriers to facilitate possible restoration projects	Improve or install barriers to facilitate possible restoration projects	Improve or install barriers to facilitate possible restoration projects	Improve or install barriers to facilitate possible restoration projects			
	Progress toward Conservation Strategy Goals	Completed: Installed one barrier.	Completed: Installed one barrier.	In Progress: Planning and engineering work are underway.	In Progress: Planning is underway.				
2.6	Maintaining sources of genetically pure RGCT	Maintain genetic purity of broodstocks	Continue field and hatchery spawn operations	Continue field and hatchery spawn operations	Continue field and hatchery spawn operations	Continue field and hatchery spawn operations			

		GMU				
Conservation Actions	Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo	
Progress toward Conservation Strategy Goals	Lake reclaimed and RGCT broodstock program	Completed: NMDGF Seven Springs Hatchery continues RGCT broodstock program.				

Obj	ective 3: Restore RGCT Populations					
3.1	Establishing and/or maintaining RGCT populations (Table 3)	Restore 6-8 conservation populations,	Restore 3-5 conservation populations	Restore 1-3 conservation populations	Restore 1-3 conservation population	Restore 1 conservation population
	Progress toward Conservation Strategy Goals	Haypress Lake and Roaring Fork completed. Planning for other	Competed: Allen Creek, Beaver Creek, Long Canyon, Casias Creek, Costilla Creek, and Costilla Reservoir completed.	restoration projects	restoration projects	Completed: Las Animas Creek completed.
3.2	Maintain genetic purity of the species among the basins	Conduct genetic analysis on selected populations, continued use of triploid rainbow trout throughout New Mexico, broodstoc developed to maintain basin-scale lineages				New Mexico, broodstock
	Progress toward Conservation Strategy Goals	Completed: Genetic analysis occurred on several populations in all basins. Triploid rainbow trout continue to be stocked in New Mexico. Broodstock development developed and maintained in Colorado and New Mexico.				

		GMU				
Conservation Actions		Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo
Obj	ective 4: Secure and enhance waters	shed conditions				
4.1	Enhancing and protecting instream and riparian habitat Progress toward Conservation Strategy Goals	Habitat enhancement on up to 5 miles of RGCT stream, continue culvert & barrier assessments, repairs, and replacements In Progress: Two miles of riparian	Habitat enhancement on 5 miles of RGCT stream; 20 acres of watershed/riparian protection In Progress: 4.5 miles restored in Rio Costilla	•	Completed: Elk exclosures constructed	
		fencing completed.	and 1.5 miles restored in Comanche Creek.	underway.	along 3 miles of stream.	
4.2	Developing and implementing habitat monitoring protocol	Implement habitat monitoring protocol Fish & habitat monitoring for RGCT streams impacted by wildfire Fish and habitat monitoring on RGCT streams associated with forest management activities.				
	Progress toward Conservation Strategy Goals	In Progress: Post-wildfire surveys occurred in several waters affected the Las Conchas, Silver, and Little Bear fires.				Bear fires.

	GMU						
Conservation Actions		Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo	
Obj	ective 5: Public Outreach						
Trout in the Classroom RGCT rearing and release, "Respect the Rio" program on Sar opportunities for RGCT, present information at NGO and other publi Rio Grande cutthroat trout lifecycle curriculum at Water Festivals in Albuquerque, Rio Rar kids & adults); local community events (annually ~ 300 kids & adults); updated Forest education materials Rio Grande Hdws.: Oral presentations to San Luis Valley chapter of Trout Unlimited, Bea Costilla County Youth Naturally conservation camps. Update RGCT conservation brochure and agreement on CPW website.					and other public meeting querque, Rio Rancho, Sant updated Forest website w t Unlimited, Beaver Creek, rvation brochure. Publish	s a Fe (annually ~ 1,000 ith curriculum and Conejos County and	
	Progress toward Conservation Strategy Goals						
Obj	ective 6: Data Sharing						
Annual meeting will be held for database updates Attend annual database update meeting			neeting				
	Progress toward Conservation Strategy Goals	Completed: GMU leaders met annually to enter data and ensure data quality and accuracy.					
6.2 Maintaining and sharing database between signatories. Maintain, improve, and				ove, and update range-w	vide database		
	Progress toward Conservation Strategy Goals	Completed: Database is r	maintained and shared ann	ually.			

		GMU					
Conservation Actions		Rio Grande Hdws.	Lower Rio Grande	Pecos	Canadian	Caballo	
Obj	ective 7: Coordination						
7.1 Attending annual range-wide coordination meeting Attend annual range-wide coordination meeting							
	Progress toward Conservation Strategy Goals Completed: Range-wide meeting occurred annualy and is widely attended by signatories, supporting organization interested stakeholders.						
7.2	Coordinating annual work plan among agencies	Maintain relationships and coordinate annual work plans among agencies through personal communication and meeting attendance					
	Progress toward Conservation Strategy Goals	Completed: Signatories coordinated work through personal communications and meetings.					
7.3	Reporting results of monitoring	Compile Accomplishments Reports, enter monitoring data into range-wide database					
	Progress toward Conservation Strategy Goals	Completed: Accomplishr	ment Reports were written	and data entered into ra	ange-wide database annua	lly.	
7.4	Assessing success of Conservation Strategy and making changes as needed	Complete 5 year Status Assessment Report; Renew Conservation Agreement					
	Progress toward Conservation Strategy Goals	In Progress: Status Asses	ssment Report completed i	n 2018, Conservation Ag	reement renewal in 2023.		