Evaluating Efficacy of Fence Markers in Reducing Greater Sage-grouse Collisions

NICK VAN LANEN
Bird Conservancy of the Rockies

Co-authors: David C. Pavlacky Jr., Taylor R. Gorman, Adam W. Green, and Laura A. Quattrini – Bird Conservancy of the Rockies
Evaluating efficacy of fence markers in reducing Greater Sage-grouse collisions

Nick Van Lanen
Adam Green
Taylor Gorman
Laura Quattrini
David Pavlacky Jr.
Conservation Problem

• Sage-grouse populations are likely in decline
• Evidence Sage-grouse collide with fences
 • Stevens et al. 2012
 • Christianson 2009
• Some evidence marking may reduce collisions
Previous Research

Observed 83% reduction in collisions when fences were marked

Used vinyl markers with reflective tape

Previous Research

Collision risk influenced by:

- Post type
- Width of fence panel (>4m between posts)
- Region
- Fence density
- Distance to leks
- Topography

Previous Research

Risk map based upon:
1) Topography
2) Proximity to leks

Our Research Objectives

1) Evaluate effectiveness of different types of fence markers
2) Investigate local and landscape-scale factors impacting collision risk
3) Validate collision risk model
Study Area

Sublette County, Wyoming
- Area of high sage-grouse density
- Evidence of collisions
- Relatively easy public access
- Cooperative landowners
Study Design

• Fence layer from Pinedale BLM

• Selected 26 leks in Sublette County
 • Minimum 2km of fencing in high & medium risk areas w/in 3km radius of lek

• Randomly assigned treatments to 500m stretches of fencing
Methods

- Installed markers in October of 2013 and March of 2014
 - 3 marker types and unmarked “control” stretches
 - Placed markers on top wire
 - ~ 2 - 3’ apart
Methods (cont’d)

• Covariate collection
 • Took measurements at 6 points along each fence segment (100m apart)
 • Vegetation height
 • Fence height
 • Lek information provided by WYGF
 • Collision risk map (Stevens et al. 2012)
Methods (cont’d)

- Walking surveys
 - March and April
 - 2014 and 2015
- Conducted 2 visits during each survey
- Surveyed fencing at each site ~ 5 to 6 times/year
Methods (cont’d)

• Only included “confirmed” strikes in analyses \(n = 64 \)
 • Feathers had to be stuck in fence
 • Removed possible predation, preening, or perching events
Analysis

- Multi-scale occupancy analysis
 - Local and landscape-scale factors affecting risk of collision
 - Used multiple “visits” within a survey to account for incomplete detection
 - Only included “new” collisions
- Placed covariates on detection, local occupancy (fence segment), and landscape occupancy (lek)
- Sequential model selection
 - p, Psi, Theta
Analysis (cont’d)

• Detection (p) Covariates
 • Visit effects
 • Survey effects
 • Observer effects
 • “Trap” effects
 • Cloud Cover
 • Snow Cover
Analysis (cont’d)

- Large-scale Occupancy Covariates
 - Year
 - # of occupied leks within 4km of focal lek
 - Sum of lek counts within 4km of focal lek
Analysis (cont’d)

- Small-scale Occupancy Covariates
 - Year
 - Marker type
 - Marker vs. Control
 - Fence exposure angle
 - Distance of fence to nearest lek
 - Height of fence exposed
 - Proportion of fence in high risk area
 - Fence post type
Multiscale Occupancy

\[\psi \]

\[\theta \]

\[\rho \]

Lek

White

Reflective

Flysafe

Control

Visit 1 Visit 2

Visit 1 Visit 2

Visit 1 Visit 2

Visit 1 Visit 2
Results

- 64 confirmed collisions
 - 2014 = 15
 - 2015 = 49
- 50 of 64 collisions on top wire
- 96 likely/possible collisions removed
Results

- Detection – constant
 - 0.935 (SE=0.026)

- Large-scale occupancy
 - 0.750 (SE=0.123)
 - Increased with sum of nearby lek counts
 - Higher in 2015
 - Null model was most supported
Results - Small-scale occupancy

- Post type
 - Both: $\beta = 1.49, SE = 0.36$
- Distance to nearest lek: $\beta = -1.11, SE = 0.24$
- Marked: $\beta = -0.85, SE = 0.36$
- 2015: $\beta = 0.98, SE = 0.44$
- Fence exposure: $\beta = 0.03, SE = 0.01$
Results - Small-scale Occupancy Marker Effectiveness

• Markers collectively reduced collision risk
 • All: Decreased risk of collision by ~58%
 • White: Decreased risk of collision by ~58%
 • Reflective: Decreased risk of collision by ~63%
 • Flysafe: Decreased risk of collision by ~50%
Results - Small-scale Occupancy: Risk decreases away from leks

$\beta = -1.11,\ SE = 0.24$
Results - Small-scale Occupancy: Risk increases with fence exposure

\[\beta = 0.03 \]

\[SE = 0.01 \]
Results - Small-scale Occupancy

• Amount of exposed fence affects collision risk
 • 15cm less exposed fence = 40% reduction in collision risk
Results - Small-scale occupancy
Wood posts reduced collision risk
Results - Small-scale Occupancy Collision risk map

- No evidence that collision risk is different between high- and medium-risk areas
Management Implications

- Markers did reduce collision
 - Use white PVC markers
 - Least expensive, easy to install
 - Almost as good as reflective
 - Better than Flysafe
- Mark fences near leks with high counts
- Mark/remove fences with T-posts
- Target marking efforts on fences with short vegetation by the fence
- Might not want to base marking efforts on collision risk map (high vs. medium risk)
Full Technical Report Available

Rocky Mountain Avian Data Center -> Reports -> 2016

Acknowledgements

Funding provided by NRCS CIG grant
Jenny Berven
Brittany Woiderski
Dale Woolwine (BLM)
Tom Christianson (WYGF)
Tony Mong (WYGF)
Field Technicians
Bird Conservancy Staff

Bird Conservancy of the Rockies
Questions?

Nick Van Lanen, Biologist
Bird Conservancy of the Rockies
Nick.vanlanen@birdconservancy.org