Climate Change and Cutthroat Trout Conservation in the Southern Rocky Mountains

JAMES J. ROBERTS
U.S. Geological Survey
Climate change and Cutthroat Trout conservation in the Southern Rocky Mountains (SRM)

James J. Roberts
USGS Colorado Water Science Center

Co-authors and collaborators
Kurt Fausch
Chris Kennedy
Mevin Hooten
Doug Peterson
Kevin Rogers
Travis Schmidt
Andrew Todd
David Walters
Matt Zeigler
Climate Change

Air temperature*
- Increase of mean annual air temperature

Hydroclimate
- Models suggest more arid conditions
- Observed patterns*
 - Earlier snowmelt and peak discharge

Isaak et al. 2012, Fisheries
Half of trout habitat in the West will be gone by 2080

Wenger et al. 2011; PNAS
Climate Change: Multiple stressors

Snowmelt driven streams

- Temperature ↑
 - Track to higher elevations
- Stream flow ↓
 - Isolated stream pools, lower elevations
- Stochastic events ↑
- Ecological setting
 - Connectivity
 - Nonnative species

Dave Herasimtschuk
Freshwaters Illustrated
Native Trout in SRM

- Colorado River CT
 - *O. c. plueriticus*; CRCT
- Greenback CT
 - *O. c. stomias*; GBCT
- Rio Grande CT
 - *O. c. virginalis*; RGCT
Colorado River Cutthroat Trout

- 14% of historical habitat
- Isolated headwater streams
- >1700m elevation

Median length: 5.9 km

N = 309
Bayesian Network: Predicting CRCT persistence

- Maximum stream temperature-MWMT
- Warmest 30-day temperature-M30AT
- Population Size (genetic risks)
- Habitat potential
- Stream fragment length
- Stochastic effects

- Time horizon
 - 2040 and 2080
 - Stream Temperature Model for UPCO
 - Dynamically Downscaled Climate Projections*

* Hostetler et al. 2011
Thermal Criteria for CRCT

- **Survival**
 - Upper Incipient Lethal Temperature
 - >26 °C with diel fluctuation

<table>
<thead>
<tr>
<th>State name</th>
<th>Stream temp (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td><26 °C</td>
</tr>
<tr>
<td>Mortality</td>
<td>≥26 °C</td>
</tr>
</tbody>
</table>
Thermal Criteria for CRCT

- **Survival**
 - Upper Incipient Lethal Temperature
 - $>26 \text{ C}$ with diel fluctuation

- **Recruitment**
 - $<8 \text{ °C}$ very low recruitment

- **Growth**
 - Optimum at $9.1-18 \text{ °C}$
 - $>75\%$ of maximum growth

<table>
<thead>
<tr>
<th>State name</th>
<th>Stream temp (M30AT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low or no recruitment</td>
<td>$<8.0\text{oC}$</td>
</tr>
<tr>
<td>Low recruitment</td>
<td>8.0-9.0°C</td>
</tr>
<tr>
<td>Optimum recruitment and growth</td>
<td>9.1-18.0°C</td>
</tr>
<tr>
<td>Declining growth</td>
<td>18.1 – 19.9°C</td>
</tr>
<tr>
<td>Little or no growth</td>
<td>$\geq20.0\text{oC}$</td>
</tr>
<tr>
<td>Mortality</td>
<td>$>26.0\text{oC}$ MWMT</td>
</tr>
</tbody>
</table>
Risks from fragmentation

- **Genetic risks - Population size (N)**
 - Predict N from fragment length (Young et al. 2005)
 - \(N_e : N \) ratio = 0.25

<table>
<thead>
<tr>
<th>State name (1+ CRCT)</th>
<th>Stream length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate neg. genetic ((N_e < 50))</td>
<td><1.7</td>
</tr>
<tr>
<td>Short-term neg. genetic ((N_e = 51-200))</td>
<td>1.7-4.6</td>
</tr>
<tr>
<td>Long-term neg. genetic ((N_e = 201-500))</td>
<td>4.7-7.7</td>
</tr>
<tr>
<td>Robust ((N_e > 500))</td>
<td>>7.7</td>
</tr>
</tbody>
</table>
Risks from fragmentation

- **Genetic risks - Population size** –
 - Predict from length (Young et al. 2005)
 - $N_e:N$ ratio = 0.25

- **Stochastic effects**
 - Patchy
 - Drying and freezing
 - Wildfire and sediment

<table>
<thead>
<tr>
<th>Stochastic effects</th>
<th>Stream length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly susceptible</td>
<td><3.6</td>
</tr>
<tr>
<td>Variable buffering</td>
<td>3.6-7.2</td>
</tr>
<tr>
<td>Robust buffering</td>
<td>>7.2</td>
</tr>
</tbody>
</table>
Stream Temperature

- Stream Temperature Model for UPCO
 - 483 records
 - Predictors
 - Climate
 - Air temp., Streamflow
 - Landscape
 - Elevation, aspect, drainage area, slope
 - Universal Kriging
 - 1.98 °C RMSPE
 - M30AT +1.1°C 2080
 - 86% of segments suitable (n=823)
Population persistence

Probability of persistence

- 0.00 - 0.50
- >0.50 - 0.75
- >0.75 - 0.90
- >0.90 - 1.00

Roberts et al. 2013; GCB
Population persistence

Probability of persistence

- 0.00 - 0.50
- >0.50 - 0.75
- >0.75 - 0.90
- >0.90 - 1.00

Current

Proportion of CRCT populations vs. Probability of CRCT persistence

2080

62% at risk

Elevation (m)

Roberts et al. 2013; GCB
Nonnative invasion: threat to fragment length

- Brook trout primary threat to CRCT headwater streams
 - Barrier failure or illegal introduction
 - Rapidly displace CRCT
- 8% invaded/decade (n=24)
- Reduce fragment by 1.5 km/yr
- Invade randomly on landscape
Invasion simulation

- 100 simulations
 - Yearly time-step
 - 2010-2080
- Removed invaded sections to recalculate temperature
- 122 extirpated
 - range 98-140
- 5 partially invaded
 - range 1-11
- 182 not invaded
Nonnative invasion: simulation
Nonnative invasion: CRCT persistence

Current

2040

2080

Roberts et al. 2017; NAJFM
Rio Grande Cutthroat Trout

- 11% of historical habitat
- Southern most sub-species
- Isolated headwaters

*2008 RGCT con. team database

RGCT population
Historical habitat

N=121

Median length 5.9 km
BN model for RGCT

- Time horizon
 - 2040 and 2080
- Stream Temperature Model for RGCT
Site-specific details: nonnative influence and population size

- 197 pop estimates
 - 61 3+ pass
- Two equations for N
 - allopatric
 - sympatric
- More RGCT/km with no nonnative (allopatry)

Ziegler et al. in revision: NAJFM
Stream temperature model: RGCT

- 544 records
- Spatial Stream Network Model
 - Similar predictors
 - Network distance
 - M30AT 0.9 °C RMSPE
- Southern most sub-species
 - warming M30AT +0.7°C in 2080
 - 2.2km unsuitable in 2080
 - 11 pops with ↓ survival

Ziegler et al. in revision: NAJFM
Rio Grande Cutthroat persistence

- 99% at risk
- 45 extirpated
- Intentional fragmentation crucial to persistence
 - 2080
 - 0.66 with barrier
 - 0.08 with no barrier

Ziegler et al. in revision: NAJFM
Lakes are important and unique

- SRM Cutthroat also in lakes
 - 50 (19) CRCT
 - 56 (10) RGCT
 - 36 (25) GBCT
- Unique habitat
 - Temperature
 - Complexity
 - Remote

Avg. Daily temp. (°C)

Inlet

<table>
<thead>
<tr>
<th>Date</th>
<th>Fryingpan Lakes</th>
<th>Clinton Gulch</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-May</td>
<td>11.5*</td>
<td>14.7*</td>
</tr>
<tr>
<td>14-Aug</td>
<td>7.7*</td>
<td>7.2*</td>
</tr>
<tr>
<td>22-Nov</td>
<td>6.4*</td>
<td>6.5*</td>
</tr>
<tr>
<td>2-Mar</td>
<td>8.9*</td>
<td>13.2*</td>
</tr>
<tr>
<td>10-Jun</td>
<td>14.7*</td>
<td>7.2*</td>
</tr>
<tr>
<td>18-Sep</td>
<td>6.5*</td>
<td>6.4*</td>
</tr>
<tr>
<td>27-Dec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*M30AT
Ecology of Cutthroat in mountain lakes
SRM lake warming

- 27 lakes
- Model of surface temp
 - SNOTEL
 - Nonlinear logistic
 - 4 metrics
 - Downscaled RCM

\[T_{\text{surface}} = \mu + \frac{\alpha - \mu}{1 + e^{(\beta - \text{air})}} \]

NSC=0.83 (mean)
Lakes are warming

- Rates across 27 lakes*
 - 0.25°C•10yr⁻¹ annual mean
 - 0.47°C•10yr⁻¹ summer mean
 - 5.9 days•10yr⁻¹ ice-free
- M30AT +2.9°C in 2080
 - Two lakes too warm in 2080
 - Greater than SRM stream increase
 - UPCO +1.1°C
 - RGB +0.7°C

*Roberts et al. 2017; PLOS One
GBCT research: Rocky Mtn. N.P.

- 27 populations
 - 10 stream
 - 17 lake

- New temperature
 - Streams (20)
 - Lakes (13)

- Influence of lakes
 - Two too warm in 2080 (Spuce and Sandbeach Lks.)

- BN Model of persistence

98 existing temp. sites
Summary

- Water temperature changing at different rates
 - Among sub-species
 - Among habitat types
- Multiple stressors
 - Water temperature
 - Nonnative species
 - Streamflow
 - Stochastic disturbances
- Refuge habitats
 - Free of nonnative species
 - Barriers
 - Large fragment size
 - Habitat complexity
Future research needs

- Detailed population demographic studies
 - More life stages
 - Influence of streamflow
- Site-specific streamflow changes
 - Habitat volume
- Habitat quality
 - Secondary production (i.e., fish food)
- Importance of specific landscape features
 - Lakes
Conclusions

- Climate change is not the only threat for SRM CT
- Type of connectivity matters!
 - Nonnative invasions
 - Lake-stream networks
- Local population data allows more detailed analyses
- Conservation embracing complexity examples
 - Current and future thermal regimes
 - Nonnative and barrier distribution important
 - Efforts to increase habitat heterogeneity
Acknowledgements

Funding and administration

Collaborators
- CRCT conservation team
- RGCT conservation team
Questions?

jroberts@usgs.gov

@FishDrJR