The Role of Translocations and Invasive Species Suppression in the Conservation of Native Fishes in Grand Canyon

Brian D. Healy

Department of Watershed Sciences, Utah State University, Logan, UT 84322, USA Ecology Center, Utah State University, Logan, UT 84322, USA Native Fish Conservation and Ecology Program, Grand Canyon National Park, Flagstaff, AZ 86001, USA



UtahState The University ECOLOGY CENTER





### Acknowledgments

Funded or supported by:

- Reclamation
- National Park Service
- **Grand Canyon Conservancy**
- Arthur L. & Elaine V. Johnson Foundation
- Center for Colorado River Studies Utah State
- US Geological Survey, Utah Cooperative Fish and Wildlife Unit (In Kind)
- Utah State University-Ecology Center/Watershed Sciences
- Arizona Game and Fish Department

Thank you to many volunteers and technicians!











OI ORADO RIVER



### Collaborators

- **National Park Service** 
  - Emily Omana Smith, Robert Schelly, Rebecca Koller, Melissa Trammell, Nic Medley, Clay Nelson, Sarah Haas, Jan Balsom, Santiago Garcia
- **Reclamation:**
- Mark McKinstry, Marianne Crawford, Dave Speas, Rich Valdez (SWCA) US Fish and Wildlife Service
  - Kirk Young, Randy Van Haverbeke, Manual Ulibarri, Dennis Stone, Mike Pillow, Pam Sponholtz
- US Geological Survey Grand Canyon Monitoring and Research Center • Charles Yackulic, David Ward, Mike Yard
- Utah State University
  - Phaedra Budy, Peter Mackinnon, Mary Conner, Jack Schmidt
- US Geological Survey, Utah Cooperative Fish and Wildlife Unit (In Kind)
  - Phaedra Budy
  - University of Missouri
    - Craig Paukert, John Spurgeon, Dan Whiting
    - University of Florida
      - William Pine
  - Arizona Game and Fish Department









NATIONAL

2411

ERVICE



OLORADO RIVER

# Outline

Challenges to effectively conserve native fishes in "novel" environments, including in Grand Canyon
Focus on tributary\* - case studies:

Invasive trout control to conserve native fishes
Translocations of humpback chub

Discuss "lessons learned" and design considerations

# Trends: Freshwater vs. Terrestrial Biodiversity

Freshwaters: 1% of global H<sub>2</sub>0, ≈ 40-43% of fishes



BIOLOGICAL REVIEWS Biol. Rev. (2019), 94, pp. 849–873. doi: 10.1111/brv.12480

### Emerging threats and persistent conservation challenges for freshwater biodiversity

Cambridge Philosophical Society

Andrea J. Reid<sup>1\*</sup>, Andrew K. Carlson<sup>2</sup>, Irena F. Creed<sup>3</sup>, Erika J. Eliason<sup>4</sup>, Peter A. Gell<sup>5</sup>, Pieter T. J. Johnson<sup>6</sup>, Karen A. Kidd<sup>7</sup>, Tyson J. MacCormack<sup>8</sup>, Julian D. Olden<sup>9</sup>, Steve J. Ormerod<sup>10</sup>, John P. Smol<sup>11</sup>, William W. Taylor<sup>2</sup>, Klement Tockner<sup>12,†</sup>, Jesse C. Vermaire<sup>13</sup>, David Dudgeon<sup>14</sup> and Steven J. Cooke<sup>1,13</sup>



Year

### Conservation constraints



Sabo et al. 2010 – PNAS, Reclaiming freshwater... Cadillac desert

#### Colorado River: "America's most endangered river"



#### Colorado River: "America's most endangered river"

Extensive water development:

- 15 large mainstem dams:
- Reservoirs store <u>7x mean annual flow!</u>

100's of water diversions





#### Colorado River: "America's most endangered river"













Joe Tomelleri Illustrations

00

#### 75% are Endemic

Endemic

Humpback chub

Endemic

Bonytail

Flannelmouth sucker

Bluehead sucker

Roundtail chub

Endemic

Endemic

Endemic

Endemic

Colorado pikeminnow

Razorback sucker

Joe Tomelleri Illustrations

Speckled de

#### 50% are Endangered

Endemic

Endang

Humpback chub

Endemic

Bonytail



Bluehead sucker

Endemic

Endemic

Roundtail chub

Endemic

Endemic

adange

Razorback sucker

Colorado pikeminnow

Joe Tomelleri Illustrations

Speckled dace

# Colorado River – National Parks





• Potentially significant role in conservation



NPS.gov / Home / Fish / Fish Conservation / Benefits of Native Fish

#### Benefits of Native Fish



The Razorback Sucker is an endangered, native fish species of the Colorado River NPS Photo

# Colorado River – National Parks





- Potentially significant role in conservation
- 9 NPS units along Colorado River
- Mandate to conserve resources over recreation
  - Organic Act, enabling legislation

### Grand Canyon



### Our Challenge:

#### Develop, test, and monitor management strategies to conserve native fish under novel conditions

Bright Angel Creek hydrology, 2010-2019

### Colorado River fishes

- Evolved in disturbanceprone environments
- Seasonally-warm thermal regime
- Life history strategies-
  - Long-lived
  - High fecundity
  - Migratory
  - Unique morphology



Day of water-year, Oct. 1-Sept. 30



### Novel habitats – post "disturbance"

- Damming & diversions
- "Stable" and predictable
- Favors fishes evolved in stable environments







### Novel habitats – post "disturbance"

- Damming & diversions
- "Stable" and predictable
- Favors fishes evolved in stable environments (e.g., salmonids)





### Study area: Grand Canyon





#### Altered hydrology



Altered thermal regime



### Study area: Grand Canyon







#### **Extirpated** species

Endemic

Endang

Bonytail

Endemic

Flannelmouth sucker

Er lemic

Roundtail chub

Bluehead sucker

Humpback chub

Endemic

Razorback sucker

Endemic

F

m

Colorado pikeminnow

Speckled d

Joe Tomelleri Illustrations

Joe Tomelleri Illustrations



Joe Tomelleri Illustrations



• Restore habitat



Joe Tomelleri Illustrations



- Dam management:
  - Outcomes difficult to predict
  - Low summer steady flow cost >\$23 million







FIGURE 2-22 Mean, Minimum, and Maximum Daily Flows under Triggered Low Summer Flows of Alternative D in an 8.23-maf Year Based on the Values Presented in Table 2-10



### Colorado River – stakeholders

Colorado River

Storage Project

Unit

Aspinall Unit

Flaming Gorge

Glen Canyon Unit

| Stakeholder                                  | Objective                                      |  |  |  |  |
|----------------------------------------------|------------------------------------------------|--|--|--|--|
| Federal agency                               |                                                |  |  |  |  |
| U.S Bureau of Reclamation                    | Water management                               |  |  |  |  |
|                                              | Protect/conserve natural and cultural          |  |  |  |  |
| National Park Service                        | resources                                      |  |  |  |  |
| U. S. Fish and Wildlife Service              | Endangered species recovery                    |  |  |  |  |
| Bureau of Indian Affairs                     | Tribal interests                               |  |  |  |  |
| Tribes                                       |                                                |  |  |  |  |
| Hualapai                                     | Maintain/protect cultural values               |  |  |  |  |
| Норі                                         | Maintain/protect cultural values               |  |  |  |  |
| Navajo                                       | Maintain/protect cultural values               |  |  |  |  |
| Pueblo of Zuni                               | Maintain/protect cultural values               |  |  |  |  |
| Southern Paiute Consortium                   | Maintain/protect cultural values               |  |  |  |  |
| San Juan Paiute                              | Maintain/protect cultural values               |  |  |  |  |
| Basin States                                 |                                                |  |  |  |  |
| Arizona                                      | Water distribution/rights                      |  |  |  |  |
| California                                   | Water distribution/rights                      |  |  |  |  |
| Colorado                                     | Water distribution/rights                      |  |  |  |  |
| Nevada                                       | Water distribution/rights                      |  |  |  |  |
| New Mexico                                   | Water distribution/rights                      |  |  |  |  |
| Utah                                         | Water distribution/rights                      |  |  |  |  |
| Wyoming                                      | Water distribution/rights                      |  |  |  |  |
| Environmental Groups                         |                                                |  |  |  |  |
| Grand Canyon Wildlands Council               | Environmental protection/conservation          |  |  |  |  |
| American Rivers                              | Environmental protection/conservation          |  |  |  |  |
| Recreation Interests                         |                                                |  |  |  |  |
| Grand Canyon River Guides                    | Commercial and recreational river running      |  |  |  |  |
| International Federation of Flyfishers/Trout |                                                |  |  |  |  |
| Unlimited                                    | Fishing for invasive trout                     |  |  |  |  |
|                                              | Federal Power Purchasers                       |  |  |  |  |
| Colorado River Energy Distributors           | Hydropower                                     |  |  |  |  |
| Utah Municipal Power                         | Hydropower                                     |  |  |  |  |
| Other                                        |                                                |  |  |  |  |
| Arizona Game and Fish Department             | Fishing interests and native fish conservation |  |  |  |  |
| Western Area Power - Department of Energy    | Department of Energy Hydropower distribution   |  |  |  |  |



Adaptive management is a dynamic process where people of many

best interests of the resources.

Program background Contact us Related Documents

OUICK NAV

talents and disciplines come together to make the right decision in the

GLEN CANYON DAM LONG-TERM EXPERIMENTAL AND MANAGEMENT PLAN ENVIRONMENTAL IMPACT STATEMENT [2]

> ENVIRONMENTAL ASSESSMENT -NONNATIVE FISH CONTROL DOWNSTREAM - GLEN CANYON DAM

Joe Tomelleri Illustrations



Manipulate populations

• Restore habitat







Study area

#### THE COLORADO RIVER BASIN

MEXICO

100 Mi

\*Natural flow & thermal regimes

### Conservation measures- Humpback chub

- Glen Canyon Dam operations Biological Opinions:
  - Control of nonnative fish (rainbow and brown trout)
  - Translocations to Grand Canyon tributaries

• NPS Comprehensive Fisheries Management Plan (2013)

| U.S. Depa                                                                                                                         | rtment of the Interior |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Rec                                                                                                                               | cord of Decision       |  |
| for the                                                                                                                           |                        |  |
| Glen Car                                                                                                                          | ivon Dam Long-Term     |  |
| Exportmont                                                                                                                        | al and Managamant Play |  |
| Experimenta                                                                                                                       | al and Management 1 la |  |
| Final Er                                                                                                                          | ivironmental Impact    |  |
|                                                                                                                                   | Statement              |  |
|                                                                                                                                   | December 2016          |  |
|                                                                                                                                   | December 2010          |  |
| U.S. Department of the Interio                                                                                                    | r                      |  |
| U.S. Department of the Interio<br>Bureau of Reclamation                                                                           | r                      |  |
| U.S. Department of the Interio<br>Bureau of Reclamation<br>Upper Colorado Region<br>Salt Lake City, Utah                          | r                      |  |
| U.S. Department of the Interio<br>Bureau of Reclamation<br>Upper Colorado Region<br>Salt Lake City, Utah<br>National Park Service | r                      |  |



# Case study: Humpback chub translocations

Illustration by Joseph Tomelleri



#### Humpback chub translocations

- Grand Canyon: largest population
- Little Colorado River center of the Humpback Chub universe:
  - Sole spawning location = Risk of extirpation
- Translocations proposed to:
  - Enhance juvenile recruitment
  - Increase population redundancy





### Translocation – Site Selection

- Valdez et al. 2000:
  - Feasibility study for developing a second spawning population in Grand Canyon
  - Evaluated 8 tributaries (water quality/quantity, habitat, presence of nonnative fishes)

| Criteria                  | Little<br>Colorado<br>River | Bright Angel<br>Creek         | Shinumo<br>Creek | Havasu*<br>Creek |
|---------------------------|-----------------------------|-------------------------------|------------------|------------------|
| Water Quantity<br>(cfs)   | 250                         | 35                            | 9                | 63               |
| Temperature<br>Range (°C) | 2-25                        | 1-24                          | 1-23             | 9-23             |
| Nonnative Fishes          | Numerous<br>(warmwater)     | Salmonids<br>(Brown<br>Trout) | Rainbow<br>Trout | Minimal          |

### Translocation sites

• Important differences in habitat among the three tributaries



### Translocation sites

• Important differences in habitat among the three tributaries – and much smaller than the Little Colorado and and Colorado rivers







### **Questions about translocations**

Will chub remain & survive in the tributaries?

Will chub augment mainstem aggregations?





### Little Colorado River Collections







### Logistics: hatchery Rearing

- 8-12 months
- Parasite & disease treatment
- Flow training
- PIT- tagging
- Weight & length measurements









# NNF control – Shinumo Creek

- Purpose:
  - Suppress rainbow trout
  - Maximize survival of translocated fish
- Electrofishing and angling
- Smaller scale than Bright Angel
- Effectiveness?



### **PIT Tag Antenna System**





### **Monitoring Metrics**

- 1) Annual Abundance of Humpback Chub
- 2) Apparent Survival
- 3) Growth

Compared to the Little Colorado River (source)

4) Reproduction/Recruitment to Maturity

### Methods – Data Analysis

- Mark-recapture sampling spring and fall:
  - Hoop nets, minnow traps
  - Abundance
  - Seasonal/annual daily growth Rates
  - Preliminary "true survival"
    - Barker model
  - Monitor fish community







### Translocations 2009-2018





Shinumo ~ 1,102 fish, 2009-2013 Havasu ~ 1,956 fish, 2011-2016 Bright Angel ~ 116 fish, 2018

Translocated humpback chub size 500 Shinumo Havasu Bright Angel 400 300 Frequency 200 100 0 100 200 250 n 50 150 300 350 Total Length (mm)

### 2014 Galahad Fire-Shinumo Creek

• Native fish extirpated





### Seasonal growth compared to LCR

Shinumo Creek

Havasu Creek



000

Data- Shinumo: Spurgeon et al. 2015, NPS unpublished data; Havasu: Healy et al. 2019; LCR: Dzul et al. 2016

### Dispersal of translocated fish



(;

### Barker model - "true" survival and fidelity

Re-sights outside translocation sites



### Re-captures at translocation sites



Allows for inclusion of "captures" in the study area, and "re-sights" (live or dead) outside of the study area

### Survival – Havasu Creek vs LCR

Havasu Creek - Barker model Havasu Creek - Barker model 1.00 1.0 Ŧ 0.8 0.95 Monthly true survival (S) Fidelity (F) 0.6 0.90 0.4 0.2 0.85 0.0 Yackulic et al. 2014: Colorado River 2012 2014 2016 2018 Little Colorado River 0.80 Time 2013 NT\* 2011 2012 2014 2015 2016

Cohort

NT\*= non-translocated/fish produced *in situ* 

### Survival/fidelity – Shinumo Creek

Shinumo Creek - Barker model



### Havasu Creek-Non-translocated HBC







000

2<sup>nd</sup> reproducing HBC population in Grand Canyon!

Healy et al. 2020. North American Journal of Fisheries Management 40:278-292

### Havasu abundance estimates



- Havasu Creek abundance:
  - Translocated fish declined
  - *New recruits increased,* slight decline in 2019 due to limited recruitment in 2018.





### HBC abundance estimates



- Havasu Creek abundance:
  - Translocated fish declined
  - *New recruits increased,* slight decline in 2019 due to limited recruitment in 2018.

#### Havasu Creek Humpback Chub, October 2019



### Next steps

- Shinumo Creek:
  - Continue to monitor recovery, trout expansion
  - Planning for possible future trout removal and translocations
- Havasu Creek:
  - Continue monitoring the reproducing population
  - Consider future genetic augmentation
- Bright Angel Creek
  - Continued trout removal
  - Monitoring abundance of native/nonnative fish
  - Translocation #2 in 2020 400+ larval fish collected in 2019



### Translocations- design considerations

Habitat assessment – identify translocation sites

- Less-impaired tributaries may provide opportunities to test actions!
- Minimize impact to the source population Population viability model (Pine et al. 2013)
- Reduce potential sources of mortality
  - Ideally no non-native fish present (e.g., Havasu)
- Define objectives establish monitoring metrics ahead of time

Adequate monitoring to understand conservation value

Exploring new ways to analyze data

### **Conservation Implications**

- Tributaries can provide opportunities for "large river fish" conservation
- Successful mechanical suppression of invasive fishes with sustained, widespread effort
- Understanding environmental drivers of native response to predator removal
- Inform conservation under "novel" conditions



### Questions?













Arthur L. & Elaine V. Johnson Foundation National Park Foundation/Albright-Wirth Grant science for a changing world



#### References

- Dzul, M. C., C. B. Yackulic, D. M. Stone, and D. R. Van Haverbeke. 2016. Survival, growth, and movement of subadult humpback chub, Gila Cypha, in the Little Colorado River, Arizona. River Research and Applications 32(3):373–382.
- Healy, B., R. Schelly, C. Nelson, E. O. Smith, M. Trammell, and R. Koller. 2018. Review of effective suppression of nonnative fishes in Bright Angel Creek, 2012 -2017, with recommendations for humpback chub translocations. Report prepared for the Bureau of Reclamation, Upper Colorado River Region, Flagstaff, Arizona.
- Healy, B. D., R. C. Schelly, C. B. Yackulic, E. C. Omana Smith, and P. Budy. (*in review*). Remarkable response of native fishes to non-native trout suppression varies with trout density, temperature, and annual hydrology.
- Healy, B. D., E. C. Omana Smith, R. C. Schelly, M. A. Trammell, and C. B. Nelson. 2020. Establishment of a reproducing population of endangered humpback chub through experimental translocations to a Colorado River tributary in Grand Canyon, Arizona. North American Journal of Fisheries Management 40(1):278–292.
- Laub, B., G. P. Thiede, W. W. Macfarlane, and P. Budy. 2018. Evaluating the conservation potential of tributaries for native fishes in the Upper Colorado River Basin. Fisheries 43(4):194–206.
- Pine, W. E., B. Healy, E. O. Smith, M. Trammell, D. Speas, R. Valdez, M. Yard, C. Walters, R. Ahrens, R. Vanhaverbeke, D. Stone, and W. Wilson. 2013. An individual-based model for population viability analysis of humpback chub in Grand Canyon. North American Journal of Fisheries Management 33(3):626–641.
- Spurgeon, J. J., C. P. Paukert, B. D. Healy, M. Trammell, D. Speas, and E. Omana Smith. 2015. Translocation of humpback chub into tributary streams of the Colorado River: implications for conservation of large-river fishes. Transactions of the American Fisheries Society 144(3):502–514.
- Yackulic, C. B., M. D. Yard, J. Korman, and D. R. Van Haverbeke. 2014. A quantitative life history of endangered humpback chub that spawn in the Little Colorado River: Variation in movement, growth, and survival. Ecology and Evolution 4(7):1006–1018.