

we can solve problems that are too big for any one organization to solve alone

DESERTLIC

desert landscape conservation cooperative

Eastern Mojave LCD Partner Workshop Indicators

Why do We Need Indicators?

- Spatial Analysis of:
 - Current conditions
 - Historic trends
- Determining appropriate conservation actions
 - Good Condition → Conservation?
 - Poor Condition > Restoration?
- Framework for monitoring and adaptive management
 - Assess effectiveness of management actions

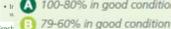
DESERT LANDSCAPE CONSERVATION COOPERATIVE

Monitoring Landscape-Scale Condition State of the South Atlantic (see southatlanticlcc.org)

people from at least 50 organizations actively participated in selecting, testing, and revising the current indicators. This first report establishes a baseline for evaluating future trends using the best science and region-wide spatial data available today.

- Upland hardwood birds: index of habitat suitability for seven upland hardwood bird
- Urban open space: index based on distance of urban areas from open space.

- · Longleaf pine extent: overall acres of longleaf
- · Pine & prairie birds: index of habitat suitability for three pine and prairie bird species.
- Pine & prairie amphibians: Priority Amphibian and Reptile Conservation Areas within pine and
- · Regularly burned habitat: acres of firemaintained, open canopy habitat.


orested wetland

- Forested wetland extent: overall acres of forested wetlands.
- · Forested wetland birds: index of habitat suitability for six forested wetland bird species.
- · Forested wetland amphibians: Priority Amphibian and Reptile Conservation Areas within forested wetlands.

reshwater aquatic

Riparian buffers: index of natural habitat near

A 100-80% in good condition

59-40% in good condition

39-20% in good condition

19-0% in good condition

Not scored: baseline for future

For more information

The conservation community, working through the South Atlantic Landscape Conservation Cooperative, regularly tests and improves the indicators. To explore geospatial indicator data and to stay up-to-date on future progress, please visit: http://StateOf.SouthAtlanticLCC.org.

Indicators provide a simple way to measure the overall condition of the South Atlantic's complex ecosystems. More than 200

- . Beach birds: index of habitat suitability for four shorebird species.
- Beach alteration: index of impacts from hardened structures like jetties, groins, and infrastructure

- . Marine turtles & mammals: index of highly productive areas for sea turtles, dolphins, and
- · Potential hardbottom condition: index of potential condition of deepwater corals and other hardbottom habitats
- · Primary productivity: index of ocean ecosystem productivity based on chlorophyll measurements.

Landscapes

- Structural connectivity: important hubs and corridors for ecological connectivity. · Low road density: index of areas with few
- · Resilient biodiversity hotspots: index of mostly natural high-diversity areas potentially resilient to climate change.
- · Low-urban historic landscapes: index of National Historic Register Sites surrounded by limited urban development.

ivers and the Confidence of local

dex of dams

final scores

· Coastal condition: index of water quality, sediment quality, and benthic condition.

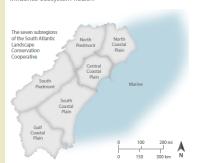
Maritime forest

Maritime forest extent: overall acres of

State of the South Atlantic

South Atlantic

South Atlantic ecosystem health scores


Overall, the South Atlantic scored a C. Piedmont areas scored the lowest, likely due to impacts from their major urban megaregions. The Marine region scored the highest; however, it did not include fishing impacts. The Coastal Plain scores were in the middle. These scores show that, while the South Atlantic is not completely healthy, there's hope for making future improvements.

North Piedmont: D Home to Charlotte. Raleigh, and large areas of upland hardwood forest. People who live and work in urban areas will help decide the future of this region.

South Piedmont: D Home to Atlanta and diverse watersheds draining into the Atlantic and Gulf. Balancing water needs for people and species continues to be a challenge.

North Coastal Plain: Home to the Outer Banks and extensive estuaries. Sealevel rise is predicted to heavily impact this particularly flat region.

Central Coastal Plain: Home to Wilmington, Myrtle Beach, and large protected wetland areas. Sea-level rise, tourism, and changing agricultural practices continue to influence ecosystem health.

South Coastal Plain: Home to Savannah, Jacksonville, and a network of protected barrier islands. Partnerships are working to conserve this region's largest river

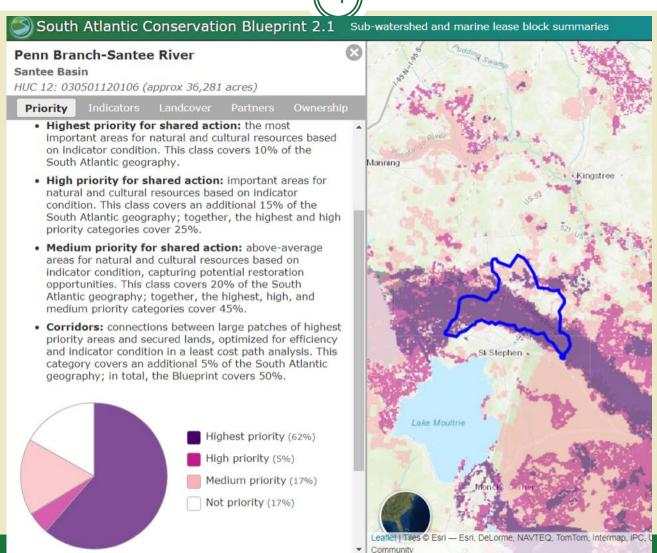
floodplains.

Gulf Coastal Plain: Home to rural Southwest Georgia and extensive conservation lands in the Big Bend of Florida. Sea-level rise and upstream agriculture continue to impact coastal protected areas.

Marine: B Home to rich fisheries, deepwater coral, diverse seabirds, and important migratory fish, whales, and turtles. Ocean acidification and increased energy development are major emerging threats.

A snapshot in time

This assessment evaluates the ecological integrity of the South Atlantic using natural and cultural resource indicators. The indicators are scored across the entire region, for individual ecosystems, and within subregions following watershed and ecoregional boundaries. All indicators are regularly tested and revised, and this first report uses the best metrics available today.


Toward conservation action

Measuring these indicators communicates the status of the region's land and waters, helping develop a more unified vision for thriving ecosystems that support communities and economies. People and organizations are working together on cross-boundary conservation actions through the South Atlantic LCC to improve ecosystem health in the face of unprecedented changes to the natural world.

Conservation Prioritization South Atlantic Blueprint

 $\left(4\right)$

Example Application

- Goal 1: Ecosystem Integrity
 - Integrity of Riparian Areas
 - ★ Area of Cottonwood-Willow
 - **Riparian Corridor Greenness**
 - **▼** In-Stream Flow at Location X
- Goal 2: Connectivity
 - Fragmentation by Roads
 - **▼** Number of Wildlife Crossings
 - **▼** Density of Paved Roads

The Goal: **3-5 indicators** per ecosystem or Connectivity/Biodiversity Sub-Goal

- Goal 3: Biodiversity
 - Biodiversity Hotspots
 - Area Protected in Hotspot 1
 - Area Protected in Hotspot 2
- Goal 4: Cultural Resources
 - Structure To Be Determined
- Goal 5: Socioeconomic Services
 - Structure To Be Determined

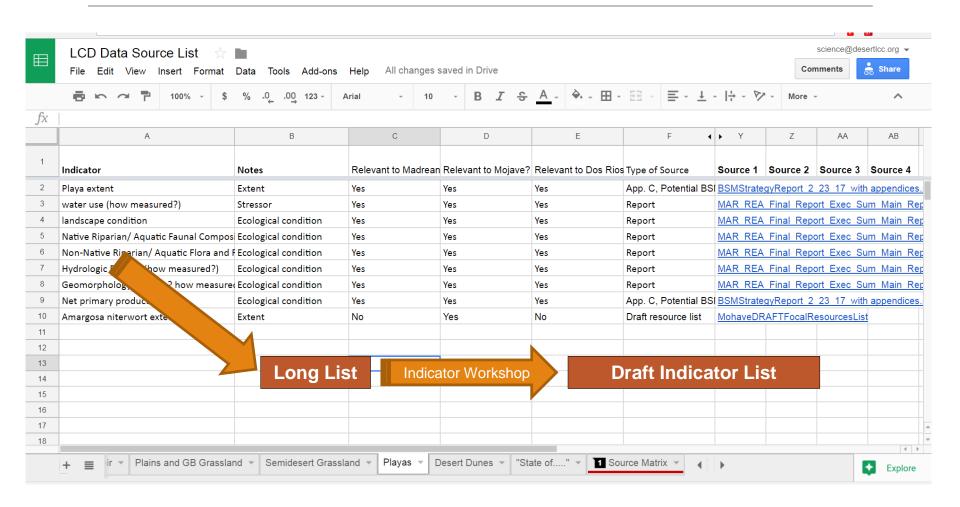
Indicator Selection Criteria

Indicators should be:

- Able to be analyzed spatially and/or represent conditions across the LCD geography
- Useful for Informing management decisions
- Able to detect changes resulting from management actions
- Ecological Criteria
- Practical Criteria
- Social/Cultural Criteria

DESERT LANDSCAPE Referenced Documents

- Plans and reports for the Eastern Mojave
 - BLM Integrated Wildlife Monitoring Workshop Report
 - California State Wildlife Action Plan Desert Province
 - Eastern Mojave Focal Resources List (draft)
 - Ecoregion-Based Conservation in the Mojave Desert Report
 - Mojave Basin and Range Rapid Ecoregional Assessment
 - NPS Mojave Desert Network Vital Signs Monitoring Plan
 - US Forest Service Broad-Scale Monitoring Strategy
- Additional Desert LCC workshops, meetings, etc.


Snapshot: Indicators in Existing Plans

			A	> ==	
	- 100% - \$ % .0 00 123 - AI	rial - 10 -	B I S A	♦. - ⊞ - 55 -	≣ - ∓
f_X	Document				
	A	В	С	D	
1	Document	Geography	Relevant to Madrean?	Relevant to Mojave?	Relevant
2	CMQ 2 Stressor Survey	Mojave, Madrean, Dos Rio	Yes	Yes	Yes
3	https://drive3V182SG8/view 🔼	Sonoran	Yes	No	Yes
4	NPS Chinuanuan ivionitoring Plan	Chihuahua	Yes	No	Yes
5	NPS Mojave Monitoring Plan	Mojave	No	Yes	No
6	Aguascalientes 2014 Meeting (not used/not found)	N/A	N/A	N/A	N/A
7	Pre-Madrean CMQ2 Survey (same as above?)	Madrean	Yes	No	No
8	LCPD workshop 2015 and pilot area nominations	AZ	Yes	Yes	Yes
9	DRAFT LCPD Goals Objectives Indicators and Measures	AZ,NM	Yes	Yes	Yes
10	Madrean Workshop Session 1 Notes: Goals and Objectives	Madrean	Yes	No	No
11	Madrean Workshop Session 2 Notes: Additional Focal Resources	Madrean	Yes	No	No
12	Madrean Session 3 Notes: Priority Resources & Stressors	Madrean	Yes	No	Yes
13	Madrean Workshop Session 4 Notes	Madrean	Yes	No	No
14	Madrean Workshop Priority Management Questions	Madrean	Yes	No	No
15	Madrean Workshop Priority Management Questions - Summary	Madrean	Yes	No	No
16	Madrean Workshop Pre-Workshop Survey Results	Madrean	Yes	No	No
17	Madrean Focal Resources Synthesis	Madrean	Yes	No	No
18	3/8/2017 CWP "State of the Cienega" Presentation	Cienega Watershed (in Ma	Yes	No	Maybe
19	Madrean Workshop Fundamental Objectives Synthesis	Madrean watershed	Yes	No	No
	+ Source Bibliography 1 Springs 1 Streams	▼ Riparian ▼ 11 Grass	sland Madrean Eve	rgreen Woodland	Son(4

Cross-Referenced Playa Indicators

Additional Members of Project Team

- •The University of Arizona:
 - Indicator research and spatial analysis support
- •USGS Southwest Climate Science Center:
 - Scenario planning

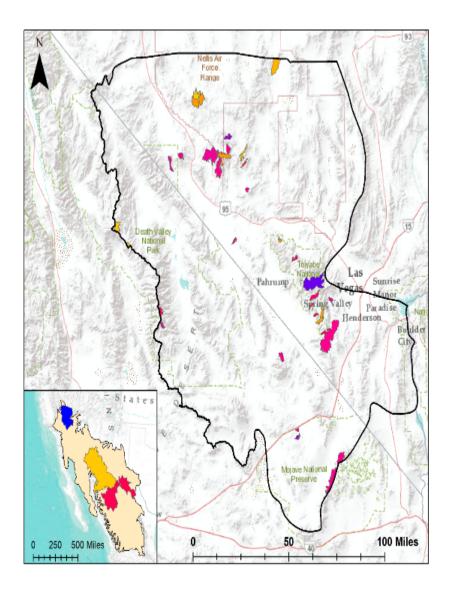
Spatial Analysis Overview

- UA TEAM Kyle Hartfield, Mickey Reed, Craig Wissler, Wim van Leeuwen
 - Desert LCC focus areas Madrean, Eastern Mojave, Dos Rios
 - Landscape Scale Indicator data (e.g. ecological condition, stressors)
 - Analysis (e.g. trends, connectivity, biodiversity)
- Iterative indicator selection/development with input/guidance from partners
- Summary of work accomplished to-date
- Spatial and temporal scale challenges and priorities

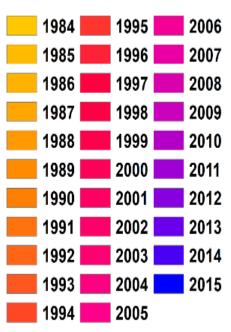
SCHOOL OF NATURAL

Contact: Leeuw@email.arizona.edu

Initial Indicator List – Downloaded data & Geodatabase Madrean Evergreen Woodland

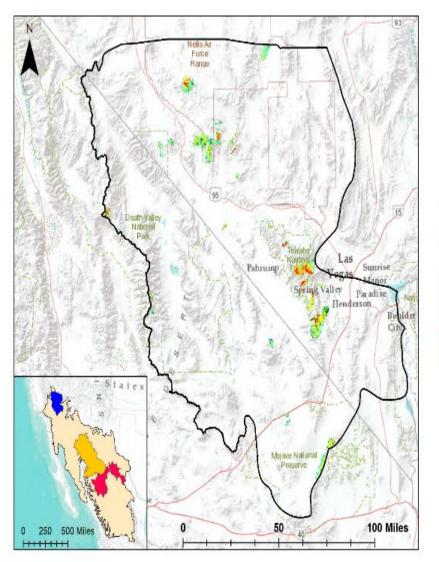

1	Indicator	Туре	Scale of Analysis (m)	Data Available for Trend to Date	Temporal Interval of Data Available (yr)	Requires Analysis to Create	Data Source (blank=not yet found)
2	Madrean Evergreen Woodland – spatial extent	Extent	30	Y	1992, 2001, 2006, 2011	N	NLCD, LPDAAC, GAP, CEC
3	Fire regime departure class	Ecological condition	30	Υ	2001, 2008, 2012, 2014	N	LANDFIRE
4	Fragmentation index	Ecological condition					
5	Patch Size	Extent					
6	Wildfire size, extent, and severity	Ecological condition	30	Υ	1984-2015 (yearly)	N	MTBS
7	Prescribed fire treatments - Number and acreage	Ecological condition	30	Υ	2008, 2010, 2012, 2014	Υ	LANDFIRE
8	Tree die-back from insects and disease – spatial extent	Stressor	30	Υ	2008, 2010, 2012, 2014	Υ	LANDFIRE
9	Mexican Spotted Owl - presence/abundance	Ecological condition	30	N	2013	N	GAP
10	Mexican Spotted Owl - habitat intactness	Ecological condition					
11	Net primary productivity	Ecological condition	500	Υ	2000 - 2014 (yearly)	N	LPDAAC
12	Fire risk – probabilities across the ecosystem	Ecological condition	30	Υ	2001, 2008, 2010, 2012, 2014	Υ	LANDFIRE
13	Carbon stocks	Extent	240	N	2000	N	NACP; WHRC
14	Vegetation phenology	Ecological condition	500	Y	2001 - 2014 (yearly)	Υ	LPDAAC
15	Fuel loading	Ecological condition	30	Υ	2001 and 2008	N	LANDFIRE
16	Risk to fire of structures in the Wildland-Urban Interface	Ecological condition					
17	Exotic invasive plants – spatial extent	Stressor					
18	Coarse woody debris - volume	Ecological condition					
19	Encroachment of forest species into grassland ecosystem	Ecological condition	30	Υ	1992, 2001, 2006, 2011	N	NLCD
4	Madrean Evergreen Woodland Sonoran Desert Scrub Springs	Streams Grasslands	(+) ; (+)				

Product
Monitoring Trends in
Burn Severity


Fire Perimeters

Format Polygons

Temporal Scale 1984-2015


ProductMonitoring Trends in Burn Severity

Levels of Burn Severity

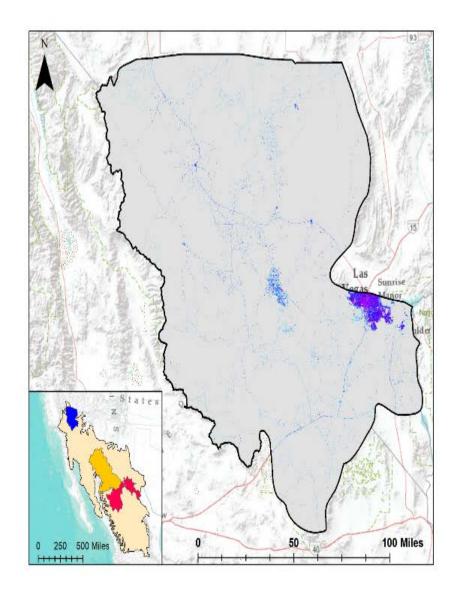
Format Raster

Temporal Scale 1984-2015

Spatial Resolution 30m

Monitoring Trends in Burn Severity 1984 - 2015 Burn Severity

- Unburned to Low
- Low
- Moderate
- High
- Increased Greeness
 - Non-Processing Area Mask


Product
National Landcover
Database

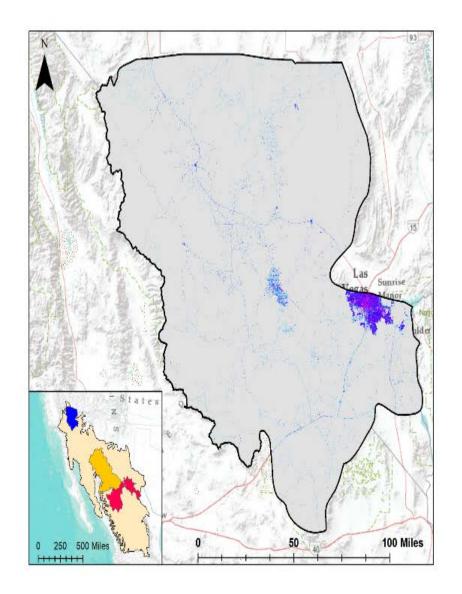
Percent Developed Impervious

Format Raster

Temporal Scale 2001, 2006, 2011

Spatial Resolution 30m

National Landcover Database 2001 Percent Impervious


Product
National Landcover
Database

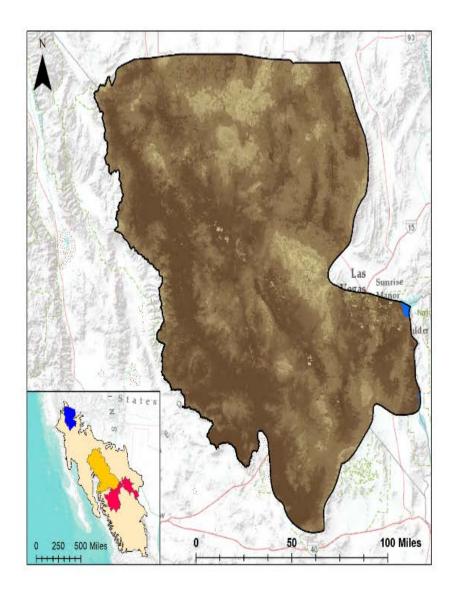
Percent Developed Impervious

Format Raster

Temporal Scale 2001, 2006, 2011

Spatial Resolution 30m

National Landcover Database 2011 Percent Impervious


ProductMODIS Vegetation
Continuous Fields

Percent Bare Ground

Format Raster

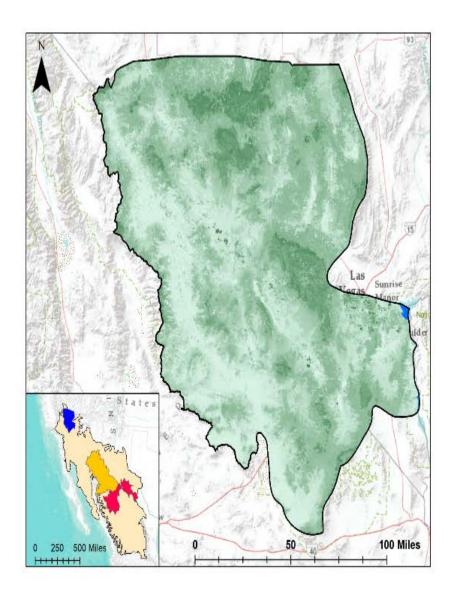
Temporal Scale 2000-2016 Yearly

Spatial Resolution 250m

MODIS Vegetation Continous Fields Percent Bare Ground in 2016

High: 100

Low: 1


ProductMODIS Vegetation
Continuous Fields

Percent Non Tree Vegetation

Format Raster

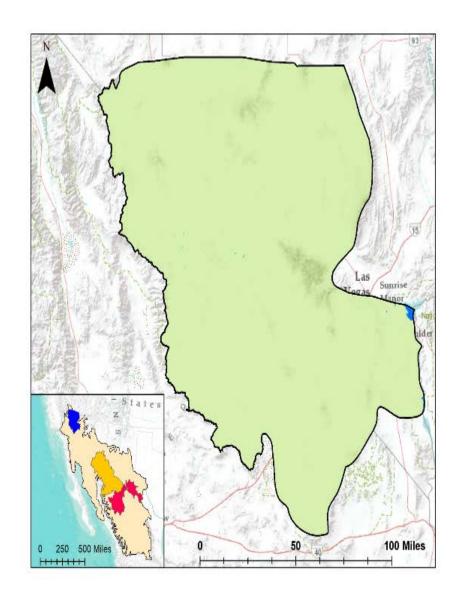
Temporal Scale 2000-2016 Yearly

Spatial Resolution 250m

MODIS Vegetation Continous Fields Percent Non Tree Vegetation in 2016

High: 100

Low: 0


ProductMODIS Vegetation
Continuous Fields

Percent Tree Cover

Format Raster

Temporal Scale 2000-2016 Yearly

Spatial Resolution 250m

MODIS Vegetation Continous Fields Percent Tree Cover in 2016

High: 100

Low: 0

Ecosystem Integrity Group Work

- •What would characterize a "healthy" ecosystem?
- Refine current indicator lists:
 - •What works?
 - •Are the data available?
- •How can land managers use the indicator information?

